Tensorflow笔记 卷积网络识别彩色图片代码

使用前要用下面的命令加载一个库,并且下载vgg16.npy,另外不建议直接使用代码,还是自己用老师给的,再慢慢查错比较好。

最后还是有一个报错,不影响结果,暂时没时间修复。

考试的时候出现了:已放弃(核心已转储),重新开了终端,用网上的sudo解决发现库不能全部加载,然后直接不加sudo运行就没有错误提示了。

虚拟机的linux好慢,加到3G内存也好慢。

    pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-image

Nclass.py

utils.py

#!/usr/bin/python
#coding:utf-8
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from pylab import mpl

mpl.rcParams['font.sans-serif']=['SimHei'] # 正常显示中文标签
mpl.rcParams['axes.unicode_minus']=False # 正常显示正负号

def load_image(path):
    fig = plt.figure("Centre and Resize")
    img = io.imread(path) 
    img = img / 255.0 
    
    ax0 = fig.add_subplot(131)  
    ax0.set_xlabel(u'Original Picture') 
    ax0.imshow(img) 
    
    short_edge = min(img.shape[:2]) 
    y = (img.shape[0] - short_edge) // 2  
    x = (img.shape[1] - short_edge) // 2 
    crop_img = img[y:y+short_edge, x:x+short_edge] 
    
    ax1 = fig.add_subplot(132) 
    ax1.set_xlabel(u"Centre Picture") 
    ax1.imshow(crop_img)
    
    re_img = transform.resize(crop_img, (224, 224)) 
    
    ax2 = fig.add_subplot(133) 
    ax2.set_xlabel(u"Resize Picture") 
    ax2.imshow(re_img)
    
    img_ready = re_img.reshape((1, 224, 224, 3))

    return img_ready

def percent(value):
    return '%.2f%%' % (value * 100)

vgg16.py

#!/usr/bin/python
#coding:utf-8

import inspect
import os
import numpy as np
import tensorflow as tf
import time
import matplotlib.pyplot as plt

VGG_MEAN = [103.939, 116.779, 123.68] 

class Vgg16():
    def __init__(self, vgg16_path=None):
        if vgg16_path is None:
            vgg16_path = os.path.join(os.getcwd(), "vgg16.npy") 
            self.data_dict = np.load(vgg16_path, encoding='latin1', allow_pickle=True).item() 

    def forward(self, images):
        
        print("build model started")
        start_time = time.time() 
        rgb_scaled = images * 255.0 
        red, green, blue = tf.split(rgb_scaled,3,3) 
        bgr = tf.concat([     
            blue - VGG_MEAN[0],
            green - VGG_MEAN[1],
            red - VGG_MEAN[2]],3)
        
        self.conv1_1 = self.conv_layer(bgr, "conv1_1") 
        self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")
        self.pool1 = self.max_pool_2x2(self.conv1_2, "pool1")
        
        self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
        self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")
        self.pool2 = self.max_pool_2x2(self.conv2_2, "pool2")

        self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
        self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")
        self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")
        self.pool3 = self.max_pool_2x2(self.conv3_3, "pool3")
        
        self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
        self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")
        self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")
        self.pool4 = self.max_pool_2x2(self.conv4_3, "pool4")
        
        self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
        self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")
        self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")
        self.pool5 = self.max_pool_2x2(self.conv5_3, "pool5")
        
        self.fc6 = self.fc_layer(self.pool5, "fc6") 
        self.relu6 = tf.nn.relu(self.fc6) 
        
        self.fc7 = self.fc_layer(self.relu6, "fc7")
        self.relu7 = tf.nn.relu(self.fc7)
        
        self.fc8 = self.fc_layer(self.relu7, "fc8")
        self.prob = tf.nn.softmax(self.fc8, name="prob")
        
        end_time = time.time() 
        print(("time consuming: %f" % (end_time-start_time)))

        self.data_dict = None 
        
    def conv_layer(self, x, name):
        with tf.variable_scope(name): 
            w = self.get_conv_filter(name) 
            conv = tf.nn.conv2d(x, w, [1, 1, 1, 1], padding='SAME') 
            conv_biases = self.get_bias(name) 
            result = tf.nn.relu(tf.nn.bias_add(conv, conv_biases)) 
            return result
    
    def get_conv_filter(self, name):
        return tf.constant(self.data_dict[name][0], name="filter") 
    
    def get_bias(self, name):
        return tf.constant(self.data_dict[name][1], name="biases")
    
    def max_pool_2x2(self, x, name):
        return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
    
    def fc_layer(self, x, name):
        with tf.variable_scope(name): 
            shape = x.get_shape().as_list() 
            dim = 1
            for i in shape[1:]:
                dim *= i 
            x = tf.reshape(x, [-1, dim])
            w = self.get_fc_weight(name) 
            b = self.get_bias(name) 
                
            result = tf.nn.bias_add(tf.matmul(x, w), b) 
            return result
    
    def get_fc_weight(self, name):  
        return tf.constant(self.data_dict[name][0], name="weights")

app.py

#coding:utf-8
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import vgg16
import utils
from Nclasses import labels

img_path = input('Input the path and image name:')
img_ready = utils.load_image(img_path) 

fig=plt.figure(u"Top-5 预测结果") 

with tf.Session() as sess:
    images = tf.placeholder(tf.float32, [1, 224, 224, 3])
    vgg = vgg16.Vgg16() 
    vgg.forward(images) 
    probability = sess.run(vgg.prob, feed_dict={images:img_ready})
    top5 = np.argsort(probability[0])[-1:-6:-1]
    print("top5:",top5)
    values = []
    bar_label = []
    for n, i in enumerate(top5): 
        print("n:",n)
        print("i:",i)
        values.append(probability[0][i]) 
        bar_label.append(labels[i]) 
        print(i, ":", labels[i], "----", utils.percent(probability[0][i]))
        
    ax = fig.add_subplot(111) 
    ax.bar(range(len(values)), values, tick_label=bar_label, width=0.5, fc='g')
    ax.set_ylabel(u'probabilityit') 
    ax.set_title(u'Top-5') 
    for a,b in zip(range(len(values)), values):
        ax.text(a, b+0.0005, utils.percent(b), ha='center', va = 'bottom', fontsize=7)   
    plt.show() 

你可能感兴趣的:(Tensorflow笔记 卷积网络识别彩色图片代码)