作者:labuladong
公众号:labuladong
经常刷 LeetCode 的读者肯定知道鼎鼎有名的 twoSum
问题,我们的旧文 Two Sum 问题的核心思想 对 twoSum
的几个变种做了解析。
但是除了 twoSum
问题,LeetCode 上面还有 3Sum
,4Sum
问题,我估计以后出个 5Sum
,6Sum
也不是不可能。
那么,对于这种问题有没有什么好办法用套路解决呢?本文就由浅入深,层层推进,用一个函数来解决所有 nSum
类型的问题。
一、twoSum 问题
力扣上的 twoSum 问题,题目要求返回的是索引,这里我来编一道 twoSum 题目,不要返回索引,返回元素的值:
如果假设输入一个数组 nums
和一个目标和 target
,请你返回 nums
中能够凑出 target
的两个元素的值,比如输入 nums = [5,3,1,6], target = 9
,那么算法返回两个元素 [3,6]
。可以假设只有且仅有一对儿元素可以凑出 target
。
我们可以先对 nums
排序,然后利用前文「双指针技巧汇总」写过的左右双指针技巧,从两端相向而行就行了:
vector twoSum(vector& nums, int target) {
// 先对数组排序
sort(nums.begin(), nums.end());
// 左右指针
int lo = 0, hi = nums.size() - 1;
while (lo < hi) {
int sum = nums[lo] + nums[hi];
// 根据 sum 和 target 的比较,移动左右指针
if (sum < target) {
lo++;
} else if (sum > target) {
hi--;
} else if (sum == target) {
return {nums[lo], nums[hi]};
}
}
return {};
}
这样就可以解决这个问题,不过我们要继续魔改题目,把这个题目变得更泛化,更困难一点:
nums
中可能有多对儿元素之和都等于 target
,请你的算法返回所有和为 target
的元素对儿,其中不能出现重复。
函数签名如下:
vector> twoSumTarget(vector& nums, int target);
比如说输入为 nums = [1,3,1,2,2,3], target = 4
,那么算法返回的结果就是:[[1,3],[2,2]]
。
对于修改后的问题,关键难点是现在可能有多个和为 target
的数对儿,还不能重复,比如上述例子中 [1,3]
和 [3,1]
就算重复,只能算一次。
首先,基本思路肯定还是排序加双指针:
vector> twoSumTarget(vector& nums, int target {
// 先对数组排序
sort(nums.begin(), nums.end());
vector> res;
int lo = 0, hi = nums.size() - 1;
while (lo < hi) {
int sum = nums[lo] + nums[hi];
// 根据 sum 和 target 的比较,移动左右指针
if (sum < target) lo++;
else if (sum > target) hi--;
else {
res.push_back({lo, hi});
lo++; hi--;
}
}
return res;
}
但是,这样实现会造成重复的结果,比如说 nums = [1,1,1,2,2,3,3], target = 4
,得到的结果中 [1,3]
肯定会重复。
出问题的地方在于 sum == target
条件的 if 分支,当给 res
加入一次结果后,lo
和 hi
不应该改变 1 的同时,还应该跳过所有重复的元素:
所以,可以对双指针的 while 循环做出如下修改:
while (lo < hi) {
int sum = nums[lo] + nums[hi];
// 记录索引 lo 和 hi 最初对应的值
int left = nums[lo], right = nums[hi];
if (sum < target) lo++;
else if (sum > target) hi--;
else {
res.push_back({left, right});
// 跳过所有重复的元素
while (lo < hi && nums[lo] == left) lo++;
while (lo < hi && nums[hi] == right) hi--;
}
}
这样就可以保证一个答案只被添加一次,重复的结果都会被跳过,可以得到正确的答案。不过,受这个思路的启发,其实前两个 if 分支也是可以做一点效率优化,跳过相同的元素:
vector> twoSumTarget(vector& nums, int target) {
// nums 数组必须有序
sort(nums.begin(), nums.end());
int lo = 0, hi = nums.size() - 1;
vector> res;
while (lo < hi) {
int sum = nums[lo] + nums[hi];
int left = nums[lo], right = nums[hi];
if (sum < target) {
while (lo < hi && nums[lo] == left) lo++;
} else if (sum > target) {
while (lo < hi && nums[hi] == right) hi--;
} else {
res.push_back({left, right});
while (lo < hi && nums[lo] == left) lo++;
while (lo < hi && nums[hi] == right) hi--;
}
}
return res;
}
这样,一个通用化的 twoSum
函数就写出来了,请确保你理解了该算法的逻辑,我们后面解决 3Sum
和 4Sum
的时候会复用这个函数。
这个函数的时间复杂度非常容易看出来,双指针操作的部分虽然有那么多 while 循环,但是时间复杂度还是 O(N)
,而排序的时间复杂度是 O(NlogN)
,所以这个函数的时间复杂度是 O(NlogN)
。
二、3Sum 问题
这是力扣第 15 题「三数之和」:
题目就是让我们找 nums
中和为 0 的三个元素,返回所有可能的三元组(triple),函数签名如下:
vector> threeSum(vector& nums);
这样,我们再泛化一下题目,不要光和为 0 的三元组了,计算和为 target
的三元组吧,同上面的 twoSum
一样,也不允许重复的结果:
vector> threeSum(vector& nums) {
// 求和为 0 的三元组
return threeSumTarget(nums, 0);
}
vector> threeSumTarget(vector& nums, int target) {
// 输入数组 nums,返回所有和为 target 的三元组
}
这个问题怎么解决呢?很简单,穷举呗。现在我们想找和为 target
的三个数字,那么对于第一个数字,可能是什么?nums
中的每一个元素 nums[i]
都有可能!
那么,确定了第一个数字之后,剩下的两个数字可以是什么呢?其实就是和为 target - nums[i]
的两个数字呗,那不就是 twoSum
函数解决的问题么
可以直接写代码了,需要把 twoSum
函数稍作修改即可复用:
/* 从 nums[start] 开始,计算有序数组
* nums 中所有和为 target 的二元组 */
vector> twoSumTarget(
vector& nums, int start, int target) {
// 左指针改为从 start 开始,其他不变
int lo = start, hi = nums.size() - 1;
vector> res;
while (lo < hi) {
...
}
return res;
}
/* 计算数组 nums 中所有和为 target 的三元组 */
vector> threeSumTarget(vector& nums, int target) {
// 数组得排个序
sort(nums.begin(), nums.end());
int n = nums.size();
vector> res;
// 穷举 threeSum 的第一个数
for (int i = 0; i < n; i++) {
// 对 target - nums[i] 计算 twoSum
vector>
tuples = twoSumTarget(nums, i + 1, target - nums[i]);
// 如果存在满足条件的二元组,再加上 nums[i] 就是结果三元组
for (vector& tuple : tuples) {
tuple.push_back(nums[i]);
res.push_back(tuple);
}
// 跳过第一个数字重复的情况,否则会出现重复结果
while (i < n - 1 && nums[i] == nums[i + 1]) i++;
}
return res;
}
需要注意的是,类似 twoSum
,3Sum
的结果也可能重复,比如输入是 nums = [1,1,1,2,3], target = 6
,结果就会重复。
关键点在于,不能让第一个数重复,至于后面的两个数,我们复用的 twoSum
函数会保证它们不重复。所以代码中必须用一个 while 循环来保证 3Sum
中第一个元素不重复。
至此,3Sum
问题就解决了,时间复杂度不难算,排序的复杂度为 O(NlogN)
,twoSumTarget
函数中的双指针操作为 O(N)
,threeSumTarget
函数在 for 循环中调用 twoSumTarget
所以总的时间复杂度就是 O(NlogN + N^2) = O(N^2)
。
三、4Sum 问题
这是力扣第 18 题「四数之和」:
函数签名如下:
vector> fourSum(vector& nums, int target);
都到这份上了,4Sum
完全就可以用相同的思路:穷举第一个数字,然后调用 3Sum
函数计算剩下三个数,最后组合出和为 target
的四元组。
vector> fourSum(vector& nums, int target) {
// 数组需要排序
sort(nums.begin(), nums.end());
int n = nums.size();
vector> res;
// 穷举 fourSum 的第一个数
for (int i = 0; i < n; i++) {
// 对 target - nums[i] 计算 threeSum
vector>
triples = threeSumTarget(nums, i + 1, target - nums[i]);
// 如果存在满足条件的三元组,再加上 nums[i] 就是结果四元组
for (vector& triple : triples) {
triple.push_back(nums[i]);
res.push_back(triple);
}
// fourSum 的第一个数不能重复
while (i < n - 1 && nums[i] == nums[i + 1]) i++;
}
return res;
}
/* 从 nums[start] 开始,计算有序数组
* nums 中所有和为 target 的三元组 */
vector>
threeSumTarget(vector& nums, int start, int target) {
int n = nums.size();
vector> res;
// i 从 start 开始穷举,其他都不变
for (int i = start; i < n; i++) {
...
}
return res;
这样,按照相同的套路,4Sum
问题就解决了,时间复杂度的分析和之前类似,for 循环中调用了 threeSumTarget
函数,所以总的时间复杂度就是 O(N^3)
。
四、100Sum 问题?
在 LeetCode 上,4Sum
就到头了,但是回想刚才写 3Sum
和 4Sum
的过程,实际上是遵循相同的模式的。我相信你只要稍微修改一下 4Sum
的函数就可以复用并解决 5Sum
问题,然后解决 6Sum
问题……
那么,如果我让你求 100Sum
问题,怎么办呢?其实我们可以观察上面这些解法,统一出一个 nSum
函数:
/* 注意:调用这个函数之前一定要先给 nums 排序 */
vector> nSumTarget(
vector& nums, int n, int start, int target) {
int sz = nums.size();
vector> res;
// 至少是 2Sum,且数组大小不应该小于 n
if (n < 2 || sz < n) return res;
// 2Sum 是 base case
if (n == 2) {
// 双指针那一套操作
int lo = start, hi = sz - 1;
while (lo < hi) {
int sum = nums[lo] + nums[hi];
int left = nums[lo], right = nums[hi];
if (sum < target) {
while (lo < hi && nums[lo] == left) lo++;
} else if (sum > target) {
while (lo < hi && nums[hi] == right) hi--;
} else {
res.push_back({left, right});
while (lo < hi && nums[lo] == left) lo++;
while (lo < hi && nums[hi] == right) hi--;
}
}
} else {
// n > 2 时,递归计算 (n-1)Sum 的结果
for (int i = start; i < sz; i++) {
vector>
sub = nSumTarget(nums, n - 1, i + 1, target - nums[i]);
for (vector& arr : sub) {
// (n-1)Sum 加上 nums[i] 就是 nSum
arr.push_back(nums[i]);
res.push_back(arr);
}
while (i < sz - 1 && nums[i] == nums[i + 1]) i++;
}
}
return res;
}
嗯,看起来很长,实际上就是把之前的题目解法合并起来了,n == 2
时是 twoSum
的双指针解法,n > 2
时就是穷举第一个数字,然后递归调用计算 (n-1)Sum
,组装答案。
需要注意的是,调用这个 nSum
函数之前一定要先给 nums
数组排序,因为 nSum
是一个递归函数,如果在 nSum
函数里调用排序函数,那么每次递归都会进行没有必要的排序,效率会非常低。
比如说现在我们写 LeetCode 上的 4Sum
问题:
vector> fourSum(vector& nums, int target) {
sort(nums.begin(), nums.end());
// n 为 4,从 nums[0] 开始计算和为 target 的四元组
return nSumTarget(nums, 4, 0, target);
}
再比如 LeetCode 的 3Sum
问题,找 target == 0
的三元组:
vector> threeSum(vector& nums) {
sort(nums.begin(), nums.end());
// n 为 3,从 nums[0] 开始计算和为 0 的三元组
return nSumTarget(nums, 3, 0, 0);
}
那么,如果让你计算 100Sum
问题,直接调用这个函数就完事儿了。