java 8 是一个非常成功的版本,这个版本新增的Stream
,配合同版本出现的 Lambda
,给我们操作集合(Collection)提供了极大的便利。
那么什么是Stream
?
Stream
将要处理的元素集合看作一种流,在流的过程中,借助Stream API
对流中的元素进行操作,比如:筛选、排序、聚合等。
Stream
可以由数组或集合创建,对流的操作分为两种:
另外,Stream
有几个特性:
几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:
import java.util.ArrayList;
import java.util.List;
public class Demo1List {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("小昭");
list.add("殷离");
list.add("张三");
list.add("张三丰");
List<String> listA = new ArrayList<>();
for ( String s : list) {
if (s.startsWith("张"))
listA.add(s);
}
List<String> listB = new ArrayList<>();
for (String s: listA) {
if (s.length() == 3)
listB.add(s);
}
for (String s: listB) {
System.out.println(s);
}
}
}
循环遍历的弊端
Java 8的Lambda更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,仔细体会一下上例代码,可以发现:
for循环的语法就是“怎么做”
for循环的循环体才是“做什么”
为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。
使用Stream写法
import java.util.ArrayList;
import java.util.List;
public class Demo2Steam {
public static void main(String[] args) {
List<String> list = new ArrayList<>();
list.add("张无忌");
list.add("周芷若");
list.add("赵敏");
list.add("小昭");
list.add("殷离");
list.add("张三");
list.add("张三丰");
list.stream()
.filter(name -> name.startsWith("张"))
.filter(name -> name.length() == 3)
.forEach(name -> System.out.println(name));
}
}
效果显而易见。
Stream
可以通过集合数组创建。
1、通过 java.util.Collection.stream()
方法用集合创建流
List<String> list = Arrays.asList("a", "b", "c"); // 创建一个顺序流 Stream<String> stream = list.stream(); // 创建一个并行流 Stream<String> parallelStream = list.parallelStream();
输出结果
2、使用java.util.Arrays.stream(T[] array)
方法用数组创建流
int[] array={1,3,5,6,8}; IntStream stream = Arrays.stream(array);
3、使用Stream
的静态方法:of()、iterate()、generate()
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6); Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4); stream2.forEach(System.out::println); Stream<Double> stream3 = Stream.generate(Math::random).limit(3); stream3.forEach(System.out::println);
输出结果:
stream和parallelStream的简单区分: stream
是顺序流,由主线程按顺序对流执行操作,而parallelStream
是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:
如果流中的数据量足够大,并行流可以加快处速度。
除了直接创建并行流,还可以通过parallel()
把顺序流转换成并行流:
Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst(); List<Integer> list = Arrays.asList(1, 3, 6, 8, 12, 4); Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst(); System.out.println("使用Stream的静态方法generate:" + findFirst.get());
在使用stream之前,先理解一个概念:Optional
。
Optional
类是一个可以为null
的容器对象。如果值存在则isPresent()
方法会返回true
,调用get()
方法会返回该对象。Optional学习链接---------
首先创建一个案例使用的员工类Person
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));
class Person {
private String name; // 姓名
private int salary; // 薪资
private int age; // 年龄
private String sex; //性别
private String area; // 地区
// 构造方法
public Person(String name, int salary, int age,String sex,String area) {
this.name = name;
this.salary = salary;
this.age = age;
this.sex = sex;
this.area = area;
}
// 省略了get和set,请自行添加
}
Stream
也是支持类似集合的遍历和匹配元素的,只是Stream
中的元素是以Optional
类型存在的。Stream
的遍历、匹配非常简单。
// import已省略,请自行添加,后面代码亦是 public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1); // 遍历输出符合条件的元素 list.stream().filter(x -> x > 6).forEach(System.out::println); // 匹配第一个 Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst(); // 匹配任意(适用于并行流) Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny(); // 是否包含符合特定条件的元素 boolean anyMatch = list.stream().anyMatch(x -> x > 6); System.out.println("匹配第一个值:" + findFirst.get()); System.out.println("匹配任意一个值:" + findAny.get()); System.out.println("是否存在大于6的值:" + anyMatch); } }
输出结果:
筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
filter
Stream<T> filter(Predicate<? super T> predicate);
案例一:筛选出Integer集合中大于7的元素,并打印出来**
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9); Stream<Integer> stream = list.stream(); stream.filter(x -> x > 7).forEach(System.out::println); } }
输出结果:
案例二: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect
(收集),后文有详细介绍。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName) .collect(Collectors.toList()); System.out.print("高于8000的员工姓名:" + fiterList); } }
输出结果:
max
、min
、count
这些一定不陌生,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
案例一:获取String集合中最长的元素。
public class StreamTest { public static void main(String[] args) { List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd"); Optional<String> max = list.stream().max(Comparator.comparing(String::length)); System.out.println("最长的字符串:" + max.get()); } }
输出结果:
案例二:获取Integer集合中的最大值。
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6); // 自然排序 Optional<Integer> max = list.stream().max(Integer::compareTo); // 自定义排序 Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() { @Override public int compare(Integer o1, Integer o2) { return o1.compareTo(o2); } }); System.out.println("自然排序的最大值:" + max.get()); System.out.println("自定义排序的最大值:" + max2.get()); } }
输出结果:
案例三:获取员工工资最高的人。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary)); System.out.println("员工工资最大值:" + max.get().getSalary()); } }
输出结果:
案例四:计算Integer集合中大于6的元素的个数。
import java.util.Arrays; import java.util.List; public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9); long count = list.stream().filter(x -> x > 6).count(); System.out.println("list中大于6的元素个数:" + count); } }
输出结果:
映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为map
和flatMap
:
map
:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。flatMap
:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。map
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
flatMap
<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。**
public class StreamTest { public static void main(String[] args) { String[] strArr = { "abcd", "bcdd", "defde", "fTr" }; List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList()); List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11); List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList()); System.out.println("每个元素大写:" + strList); System.out.println("每个元素+3:" + intListNew); } }
输出结果:
案例二:将员工的薪资全部增加1000。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 不改变原来员工集合的方式 List<Person> personListNew = personList.stream().map(person -> { Person personNew = new Person(person.getName(), 0, 0, null, null); personNew.setSalary(person.getSalary() + 10000); return personNew; }).collect(Collectors.toList()); System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary()); System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary()); // 改变原来员工集合的方式 List<Person> personListNew2 = personList.stream().map(person -> { person.setSalary(person.getSalary() + 10000); return person; }).collect(Collectors.toList()); System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary()); System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary()); } }
输出结果:
案例三:将两个字符数组合并成一个新的字符数组。
public class StreamTest { public static void main(String[] args) { List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7"); List<String> listNew = list.stream().flatMap(s -> { // 将每个元素转换成一个stream String[] split = s.split(","); Stream<String> s2 = Arrays.stream(split); return s2; }).collect(Collectors.toList()); System.out.println("处理前的集合:" + list); System.out.println("处理后的集合:" + listNew); } }
输出结果:
归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
reduce
T reduce(T identity, BinaryOperator<T> accumulator); @Override public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) { return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator)); } Optional<T> reduce(BinaryOperator<T> accumulator); @Override public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) { return evaluate(ReduceOps.makeRef(accumulator)); } <U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner); @Override public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) { return evaluate(ReduceOps.makeRef(identity, accumulator, combiner)); }
Optional reduce(BinaryOperator accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
T reduce(T identity, BinaryOperator accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。
案例一:求Integer集合的元素之和、乘积和最大值。**
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4); // 求和方式1 Optional<Integer> sum = list.stream().reduce((x, y) -> x + y); // 求和方式2 Optional<Integer> sum2 = list.stream().reduce(Integer::sum); // 求和方式3 Integer sum3 = list.stream().reduce(0, Integer::sum); // 求乘积 Optional<Integer> product = list.stream().reduce((x, y) -> x * y); // 求最大值方式1 Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y); // 求最大值写法2 Integer max2 = list.stream().reduce(1, Integer::max); System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3); System.out.println("list求积:" + product.get()); System.out.println("list求和:" + max.get() + "," + max2); } }
输出结果
案例二:求所有员工的工资之和和最高工资。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); personList.add(new Person("Owen", 9500, 25, "male", "New York")); personList.add(new Person("Alisa", 7900, 26, "female", "New York")); // 求工资之和方式1: Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum); // 求工资之和方式2: Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), (sum1, sum2) -> sum1 + sum2); // 求工资之和方式3: Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum); // 求最高工资方式1: Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), Integer::max); // 求最高工资方式2: Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(), (max1, max2) -> max1 > max2 ? max1 : max2); System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3); System.out.println("最高工资:" + maxSalary + "," + maxSalary2); } }
输出结果:
collect
,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。
collect
主要依赖java.util.stream.Collectors
类内置的静态方法。
因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toList
、toSet
和toMap
比较常用,另外还有toCollection
、toConcurrentMap
等复杂一些的用法。
下面用一个案例演示toList
、toSet
和toMap
:
public class StreamTest { public static void main(String[] args) { List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20); List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList()); Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet()); List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); personList.add(new Person("Anni", 8200, 24, "female", "New York")); Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000) .collect(Collectors.toMap(Person::getName, p -> p)); System.out.println("toList:" + listNew); System.out.println("toSet:" + set); System.out.println("toMap:" + map); } }
输出结果
Collectors
提供了一系列用于数据统计的静态方法:
案例:统计员工人数、平均工资、工资总额、最高工资。
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, 23, "male", "New York")); personList.add(new Person("Jack", 7000, 25, "male", "Washington")); personList.add(new Person("Lily", 7800, 21, "female", "Washington")); // 求总数 Long count = personList.stream().collect(Collectors.counting()); // 求平均工资 Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary)); // 求最高工资 Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare)); // 求工资之和 Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary)); // 一次性统计所有信息 DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary)); System.out.println("员工总数:" + count); System.out.println("员工平均工资:" + average); System.out.println("员工工资总和:" + sum); System.out.println("员工工资所有统计:" + collect); } }
输出结果:
分区:将stream
按条件分为两个Map
,比如员工按薪资是否高于8000分为两部分。
分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。
partitioningBy
public static <T> Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) { return partitioningBy(predicate, toList()); }
groupingBy
public static <T, K> Collector<T, ?, Map<K, List<T>>> groupingBy(Function<? super T, ? extends K> classifier) { return groupingBy(classifier, toList()); }
案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组**
public class StreamTest { public static void main(String[] args) { List<Person> personList = new ArrayList<Person>(); personList.add(new Person("Tom", 8900, "male", "New York")); personList.add(new Person("Jack", 7000, "male", "Washington")); personList.add(new Person("Lily", 7800, "female", "Washington")); personList.add(new Person("Anni", 8200, "female", "New York")); personList.add(new Person("Owen", 9500, "male", "New York")); personList.add(new Person("Alisa", 7900, "female", "New York")); // 将员工按薪资是否高于8000分组 Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000)); // 将员工按性别分组 Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex)); // 将员工先按性别分组,再按地区分组 Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea))); System.out.println("员工按薪资是否大于8000分组情况:" + part); System.out.println("员工按性别分组情况:" + group); System.out.println("员工按性别、地区:" + group2); } }
输出结果:
joining
可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。
joining
public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) { return joining(delimiter, "", ""); }
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
System.out.println("所有员工的姓名:" + names);
List<String> list = Arrays.asList("A", "B", "C");
String string = list.stream().collect(Collectors.joining("-"));
System.out.println("拼接后的字符串:" + string);
}
}
输出结果:
Collectors
类提供的reducing
方法,相比于stream
本身的reduce
方法,增加了对自定义归约的支持。
reducing
public static <T> Collector<T, ?, Optional<T>> reducing(BinaryOperator<T> op) { class OptionalBox implements Consumer<T> { T value = null; boolean present = false; @Override public void accept(T t) { if (present) { value = op.apply(value, t); } else { value = t; present = true; } } } return new CollectorImpl<T, OptionalBox, Optional<T>>( OptionalBox::new, OptionalBox::accept, (a, b) -> { if (b.present) a.accept(b.value); return a; }, a -> Optional.ofNullable(a.value), CH_NOID); }
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
System.out.println("员工扣税薪资总和:" + sum);
// stream的reduce
Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
System.out.println("员工薪资总和:" + sum2.get());
}
}
输出结果:
sorted,中间操作。有两种排序:
sorted
Stream<T> sorted(); @Override public final Stream<P_OUT> sorted() { return SortedOps.makeRef(this); }
sorted(Comparator com)
Stream<T> sorted(Comparator<? super T> comparator); @Override public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) { return SortedOps.makeRef(this, comparator); }
案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序
public class StreamTest {
public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
personList.add(new Person("Lily", 8800, 26, "male", "New York"));
personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
// 按工资升序排序(自然排序)
List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
.collect(Collectors.toList());
// 按工资倒序排序
List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
.map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄升序排序
List<String> newList3 = personList.stream()
.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
.collect(Collectors.toList());
// 先按工资再按年龄自定义排序(降序)
List<String> newList4 = personList.stream().sorted((p1, p2) -> {
if (p1.getSalary() == p2.getSalary()) {
return p2.getAge() - p1.getAge();
} else {
return p2.getSalary() - p1.getSalary();
}
}).map(Person::getName).collect(Collectors.toList());
System.out.println("按工资升序排序:" + newList);
System.out.println("按工资降序排序:" + newList2);
System.out.println("先按工资再按年龄升序排序:" + newList3);
System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}
}
输出结果:
流也可以进行合并、去重、限制、跳过等操作。
distinct(去重)
Stream<T> distinct(); @Override public final Stream<P_OUT> distinct() { return DistinctOps.makeRef(this); }
skip(跳过)
Stream<T> skip(long n); @Override public final Stream<P_OUT> skip(long n) { if (n < 0) throw new IllegalArgumentException(Long.toString(n)); if (n == 0) return this; else return SliceOps.makeRef(this, n, -1); }
limit
Stream<T> limit(long maxSize); @Override public final Stream<P_OUT> limit(long maxSize) { if (maxSize < 0) throw new IllegalArgumentException(Long.toString(maxSize)); return SliceOps.makeRef(this, 0, maxSize); }
public class StreamTest { public static void main(String[] args) { String[] arr1 = { "a", "b", "c", "d" }; String[] arr2 = { "d", "e", "f", "g" }; Stream<String> stream1 = Stream.of(arr1); Stream<String> stream2 = Stream.of(arr2); // concat:合并两个流 distinct:去重 List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList()); // limit:限制从流中获得前n个数据 List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList()); // skip:跳过前n个数据 这里的1代表把1代入后边的计算表达式 List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList()); System.out.println("流合并:" + newList); System.out.println("limit:" + collect); System.out.println("skip:" + collect2); } }
运行结果: