本文主要在centos7系统上基于docker
和flannel
组件部署v1.23.6
版本的k8s原生集群,由于集群主要用于自己平时学习和测试使用,加上资源有限,暂不涉及高可用部署。
此前写的一些关于k8s基础知识和集群搭建的一些方案,有需要的同学可以看一下。
机器均为8C8G的虚拟机,硬盘为100G。
IP | Hostname |
---|---|
10.31.8.1 | tiny-flannel-master-8-1.k8s.tcinternal |
10.31.8.11 | tiny-flannel-worker-8-11.k8s.tcinternal |
10.31.8.12 | tiny-flannel-worker-8-12.k8s.tcinternal |
10.8.64.0/18 | podSubnet |
10.8.0.0/18 | serviceSubnet |
同一个k8s集群内的所有节点需要确保mac
地址和product_uuid
均唯一,开始集群初始化之前需要检查相关信息
# 检查mac地址
ip link
ifconfig -a
# 检查product_uuid
sudo cat /sys/class/dmi/id/product_uuid
如果k8s集群的节点有多个网卡,确保每个节点能通过正确的网卡互联访问
# 在root用户下面生成一个公用的key,并配置可以使用该key免密登录
su root
ssh-keygen
cd /root/.ssh/
cat id_rsa.pub >> authorized_keys
chmod 600 authorized_keys
cat >> ~/.ssh/config <<EOF
Host tiny-flannel-master-8-1.k8s.tcinternal
HostName 10.31.8.1
User root
Port 22
IdentityFile ~/.ssh/id_rsa
Host tiny-flannel-worker-8-11.k8s.tcinternal
HostName 10.31.8.11
User root
Port 22
IdentityFile ~/.ssh/id_rsa
Host tiny-flannel-worker-8-12.k8s.tcinternal
HostName 10.31.8.12
User root
Port 22
IdentityFile ~/.ssh/id_rsa
EOF
cat >> /etc/hosts <<EOF
10.31.8.1 tiny-flannel-master-8-1 tiny-flannel-master-8-1.k8s.tcinternal
10.31.8.11 tiny-flannel-worker-8-11 tiny-flannel-worker-8-11.k8s.tcinternal
10.31.8.12 tiny-flannel-worker-8-12 tiny-flannel-worker-8-12.k8s.tcinternal
EOF
# 使用命令直接关闭swap内存
swapoff -a
# 修改fstab文件禁止开机自动挂载swap分区
sed -i '/swap / s/^\(.*\)$/#\1/g' /etc/fstab
这里可以根据自己的习惯选择ntp或者是chrony同步均可,同步的时间源服务器可以选择阿里云的ntp1.aliyun.com
或者是国家时间中心的ntp.ntsc.ac.cn
。
# 使用yum安装ntpdate工具
yum install ntpdate -y
# 使用国家时间中心的源同步时间
ntpdate ntp.ntsc.ac.cn
# 最后查看一下时间
hwclock
# 使用yum安装chrony
yum install chrony -y
# 设置开机启动并开启chony并查看运行状态
systemctl enable chronyd.service
systemctl start chronyd.service
systemctl status chronyd.service
# 当然也可以自定义时间服务器
vim /etc/chrony.conf
# 修改前
$ grep server /etc/chrony.conf
# Use public servers from the pool.ntp.org project.
server 0.centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.pool.ntp.org iburst
server 3.centos.pool.ntp.org iburst
# 修改后
$ grep server /etc/chrony.conf
# Use public servers from the pool.ntp.org project.
server ntp.ntsc.ac.cn iburst
# 重启服务使配置文件生效
systemctl restart chronyd.service
# 查看chrony的ntp服务器状态
chronyc sourcestats -v
chronyc sources -v
# 使用命令直接关闭
setenforce 0
# 也可以直接修改/etc/selinux/config文件
sed -i 's/^SELINUX=enforcing$/SELINUX=disabled/' /etc/selinux/config
k8s集群之间通信和服务暴露需要使用较多端口,为了方便,直接禁用防火墙
# centos7使用systemctl禁用默认的firewalld服务
systemctl disable firewalld.service
这里主要是需要配置内核加载br_netfilter
和iptables
放行ipv6
和ipv4
的流量,确保集群内的容器能够正常通信。
cat <
虽然新版本的k8s已经支持双栈网络,但是本次的集群部署过程并不涉及IPv6网络的通信,因此关闭IPv6网络支持
# 直接在内核中添加ipv6禁用参数
grubby --update-kernel=ALL --args=ipv6.disable=1
IPVS是专门设计用来应对负载均衡场景的组件,kube-proxy 中的 IPVS 实现通过减少对 iptables 的使用来增加可扩展性。在 iptables 输入链中不使用 PREROUTING,而是创建一个假的接口,叫做 kube-ipvs0,当k8s集群中的负载均衡配置变多的时候,IPVS能实现比iptables更高效的转发性能。
注意在4.19之后的内核版本中使用
nf_conntrack
模块来替换了原有的nf_conntrack_ipv4
模块(Notes: use
nf_conntrack
instead ofnf_conntrack_ipv4
for Linux kernel 4.19 and later)
# 在使用ipvs模式之前确保安装了ipset和ipvsadm
sudo yum install ipset ipvsadm -y
# 手动加载ipvs相关模块
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack_ipv4
# 配置开机自动加载ipvs相关模块
cat <<EOF | sudo tee /etc/modules-load.d/ipvs.conf
ip_vs
ip_vs_rr
ip_vs_wrr
ip_vs_sh
nf_conntrack_ipv4
EOF
sudo sysctl --system
# 最好重启一遍系统确定是否生效
$ lsmod | grep -e ip_vs -e nf_conntrack_ipv4
ip_vs_sh 12688 0
ip_vs_wrr 12697 0
ip_vs_rr 12600 0
ip_vs 145458 6 ip_vs_rr,ip_vs_sh,ip_vs_wrr
nf_conntrack_ipv4 15053 2
nf_defrag_ipv4 12729 1 nf_conntrack_ipv4
nf_conntrack 139264 7 ip_vs,nf_nat,nf_nat_ipv4,xt_conntrack,nf_nat_masquerade_ipv4,nf_conntrack_netlink,nf_conntrack_ipv4
libcrc32c 12644 4 xfs,ip_vs,nf_nat,nf_conntrack
$ cut -f1 -d " " /proc/modules | grep -e ip_vs -e nf_conntrack_ipv4
ip_vs_sh
ip_vs_wrr
ip_vs_rr
ip_vs
nf_conntrack_ipv4
详细的官方文档可以参考这里,由于在刚发布的1.24版本中移除了docker-shim
,因此安装的版本≥1.24
的时候需要注意容器运行时
的选择。这里我们安装的版本低于1.24,因此我们继续使用docker。
docker的具体安装可以参考我之前写的这篇文章,这里不做赘述。
# 安装必要的依赖组件并且导入docker官方提供的yum源
sudo yum install -y yum-utils device-mapper-persistent-data lvm2
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
# 我们直接安装最新版本的docker
yum install docker-ce docker-ce-cli containerd.io
CentOS7使用的是systemd
来初始化系统并管理进程,初始化进程会生成并使用一个 root 控制组 (cgroup
), 并充当 cgroup
管理器。 Systemd
与 cgroup
集成紧密,并将为每个 systemd
单元分配一个 cgroup
。 我们也可以配置容器运行时
和 kubelet
使用 cgroupfs
。 连同 systemd
一起使用 cgroupfs
意味着将有两个不同的 cgroup 管理器
。而当一个系统中同时存在cgroupfs和systemd两者时,容易变得不稳定,因此最好更改设置,令容器运行时和 kubelet 使用 systemd
作为 cgroup
驱动,以此使系统更为稳定。 对于 Docker, 需要设置 native.cgroupdriver=systemd
参数。
参考官方的说明文档:
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cgroup-drivers
参考配置说明文档
https://kubernetes.io/zh/docs/setup/production-environment/container-runtimes/#docker
sudo mkdir /etc/docker
cat <<EOF | sudo tee /etc/docker/daemon.json
{
"exec-opts": ["native.cgroupdriver=systemd"],
"log-driver": "json-file",
"log-opts": {
"max-size": "100m"
},
"storage-driver": "overlay2"
}
EOF
sudo systemctl enable docker
sudo systemctl daemon-reload
sudo systemctl restart docker
# 最后检查一下Cgroup Driver是否为systemd
$ docker info | grep systemd
Cgroup Driver: systemd
k8s官方有详细的文档介绍了如何设置kubelet的cgroup driver
,需要特别注意的是,在1.22版本开始,如果没有手动设置kubelet的cgroup driver,那么默认会设置为systemd
Note: In v1.22, if the user is not setting the
cgroupDriver
field underKubeletConfiguration
,kubeadm
will default it tosystemd
.
一个比较简单的指定kubelet的cgroup driver
的方法就是在kubeadm-config.yaml
加入cgroupDriver
字段
# kubeadm-config.yaml
kind: ClusterConfiguration
apiVersion: kubeadm.k8s.io/v1beta3
kubernetesVersion: v1.21.0
---
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
cgroupDriver: systemd
我们可以直接查看configmaps来查看初始化之后集群的kubeadm-config配置。
$ kubectl describe configmaps kubeadm-config -n kube-system
Name: kubeadm-config
Namespace: kube-system
Labels:
Annotations:
Data
====
ClusterConfiguration:
----
apiServer:
extraArgs:
authorization-mode: Node,RBAC
timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta3
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes
controllerManager: {}
dns: {}
etcd:
local:
dataDir: /var/lib/etcd
imageRepository: registry.aliyuncs.com/google_containers
kind: ClusterConfiguration
kubernetesVersion: v1.23.6
networking:
dnsDomain: cali-cluster.tclocal
serviceSubnet: 10.88.0.0/18
scheduler: {}
BinaryData
====
Events:
当然因为我们需要安装的版本高于1.22.0并且使用的就是systemd,因此可以不用再重复配置。
对应的官方文档可以参考这里
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/#installing-kubeadm-kubelet-and-kubectl
kube三件套就是kubeadm
、kubelet
和 kubectl
,三者的具体功能和作用如下:
kubeadm
:用来初始化集群的指令。kubelet
:在集群中的每个节点上用来启动 Pod 和容器等。kubectl
:用来与集群通信的命令行工具。需要注意的是:
kubeadm
不会帮助我们管理kubelet
和kubectl
,其他两者也是一样的,也就是说这三者是相互独立的,并不存在谁管理谁的情况;kubelet
的版本必须小于等于API-server
的版本,否则容易出现兼容性的问题;kubectl
并不是集群中的每个节点都需要安装,也并不是一定要安装在集群中的节点,可以单独安装在自己本地的机器环境上面,然后配合kubeconfig
文件即可使用kubectl
命令来远程管理对应的k8s集群;CentOS7的安装比较简单,我们直接使用官方提供的yum
源即可。需要注意的是这里需要设置selinux
的状态,但是前面我们已经关闭了selinux,因此这里略过这步。
# 直接导入谷歌官方的yum源
cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-\$basearch
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
exclude=kubelet kubeadm kubectl
EOF
# 当然如果连不上谷歌的源,可以考虑使用国内的阿里镜像源
cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF
# 接下来直接安装三件套即可
sudo yum install -y kubelet kubeadm kubectl --disableexcludes=kubernetes
# 如果网络环境不好出现gpgcheck验证失败导致无法正常读取yum源,可以考虑关闭该yum源的repo_gpgcheck
sed -i 's/repo_gpgcheck=1/repo_gpgcheck=0/g' /etc/yum.repos.d/kubernetes.repo
# 或者在安装的时候禁用gpgcheck
sudo yum install -y kubelet kubeadm kubectl --nogpgcheck --disableexcludes=kubernetes
# 如果想要安装特定版本,可以使用这个命令查看相关版本的信息
sudo yum list --nogpgcheck kubelet kubeadm kubectl --showduplicates --disableexcludes=kubernetes
# 这里我们为了保留使用docker-shim,因此我们按照1.24.0版本的前一个版本1.23.6
sudo yum install -y kubelet-1.23.6-0 kubeadm-1.23.6-0 kubectl-1.23.6-0 --nogpgcheck --disableexcludes=kubernetes
# 安装完成后配置开机自启kubelet
sudo systemctl enable --now kubelet
在集群中所有节点都执行完上面的三点操作之后,我们就可以开始创建k8s集群了。因为我们这次不涉及高可用部署,因此初始化的时候直接在我们的目标master节点上面操作即可。
# 我们先使用kubeadm命令查看一下主要的几个镜像版本
# 因为我们此前指定安装了旧的1.23.6版本,这里的apiserver镜像版本也会随之回滚
$ kubeadm config images list
I0507 14:14:34.992275 20038 version.go:255] remote version is much newer: v1.24.0; falling back to: stable-1.23
k8s.gcr.io/kube-apiserver:v1.23.6
k8s.gcr.io/kube-controller-manager:v1.23.6
k8s.gcr.io/kube-scheduler:v1.23.6
k8s.gcr.io/kube-proxy:v1.23.6
k8s.gcr.io/pause:3.6
k8s.gcr.io/etcd:3.5.1-0
k8s.gcr.io/coredns/coredns:v1.8.6
# 为了方便编辑和管理,我们还是把初始化参数导出成配置文件
$ kubeadm config print init-defaults > kubeadm-flannel.conf
imageRepository
参数为阿里的镜像源kubernetesVersion
字段用来指定我们要安装的k8s版本localAPIEndpoint
参数需要修改为我们的master节点的IP和端口,初始化之后的k8s集群的apiserver地址就是这个serviceSubnet
和dnsDomain
两个参数默认情况下可以不用修改,这里我按照自己的需求进行了变更nodeRegistration
里面的name
参数修改为对应master节点的hostname
apiVersion: kubeadm.k8s.io/v1beta3
bootstrapTokens:
- groups:
- system:bootstrappers:kubeadm:default-node-token
token: abcdef.0123456789abcdef
ttl: 24h0m0s
usages:
- signing
- authentication
kind: InitConfiguration
localAPIEndpoint:
advertiseAddress: 10.31.8.1
bindPort: 6443
nodeRegistration:
criSocket: /var/run/dockershim.sock
imagePullPolicy: IfNotPresent
name: tiny-flannel-master-8-1.k8s.tcinternal
taints: null
---
apiServer:
timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta3
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes
controllerManager: {}
dns: {}
etcd:
local:
dataDir: /var/lib/etcd
imageRepository: registry.aliyuncs.com/google_containers
kind: ClusterConfiguration
kubernetesVersion: 1.23.6
networking:
dnsDomain: flan-cluster.tclocal
serviceSubnet: 10.8.0.0/18
podSubnet: 10.8.64.0/18
scheduler: {}
---
apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
mode: ipvs
此时我们再查看对应的配置文件中的镜像版本,就会发现已经变成了对应阿里云镜像源的版本
# 查看一下对应的镜像版本,确定配置文件是否生效
$ kubeadm config images list --config kubeadm-flannel.conf
registry.aliyuncs.com/google_containers/kube-apiserver:v1.23.6
registry.aliyuncs.com/google_containers/kube-controller-manager:v1.23.6
registry.aliyuncs.com/google_containers/kube-scheduler:v1.23.6
registry.aliyuncs.com/google_containers/kube-proxy:v1.23.6
registry.aliyuncs.com/google_containers/pause:3.6
registry.aliyuncs.com/google_containers/etcd:3.5.1-0
registry.aliyuncs.com/google_containers/coredns:v1.8.6
# 确认没问题之后我们直接拉取镜像
$ kubeadm config images pull --config kubeadm-flannel.conf
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-apiserver:v1.23.6
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-controller-manager:v1.23.6
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-scheduler:v1.23.6
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-proxy:v1.23.6
[config/images] Pulled registry.aliyuncs.com/google_containers/pause:3.6
[config/images] Pulled registry.aliyuncs.com/google_containers/etcd:3.5.1-0
[config/images] Pulled registry.aliyuncs.com/google_containers/coredns:v1.8.6
# 初始化
$ kubeadm init --config kubeadm-flannel.conf
[init] Using Kubernetes version: v1.23.6
[preflight] Running pre-flight checks
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
...此处略去一堆输出...
当我们看到下面这个输出结果的时候,我们的集群就算是初始化成功了。
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 10.31.8.1:6443 --token abcdef.0123456789abcdef \
--discovery-token-ca-cert-hash sha256:d7160866920c0331731ad3c1c31a6e5b6c788b5682f86971cacaa940211db9ab
刚初始化成功之后,我们还没办法马上查看k8s集群信息,需要配置kubeconfig相关参数才能正常使用kubectl连接apiserver读取集群信息。
# 对于非root用户,可以这样操作
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
# 如果是root用户,可以直接导入环境变量
export KUBECONFIG=/etc/kubernetes/admin.conf
# 添加kubectl的自动补全功能
echo "source <(kubectl completion bash)" >> ~/.bashrc
前面我们提到过
kubectl
不一定要安装在集群内,实际上只要是任何一台能连接到apiserver
的机器上面都可以安装kubectl
并且根据步骤配置kubeconfig
,就可以使用kubectl
命令行来管理对应的k8s集群。
配置完成后,我们再执行相关命令就可以查看集群的信息了。
$ kubectl cluster-info
Kubernetes control plane is running at https://10.31.8.1:6443
CoreDNS is running at https://10.31.8.1:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy
To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.
$ kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
tiny-flannel-master-8-1.k8s.tcinternal NotReady control-plane,master 79s v1.23.6 10.31.8.1 <none> CentOS Linux 7 (Core) 3.10.0-1160.62.1.el7.x86_64 docker://20.10.14
$ kubectl get pods -A -o wide
NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
kube-system coredns-6d8c4cb4d-2clkj 0/1 Pending 0 86s <none> <none> <none> <none>
kube-system coredns-6d8c4cb4d-8mznz 0/1 Pending 0 86s <none> <none> <none> <none>
kube-system etcd-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 91s 10.31.8.1 tiny-flannel-master-8-1.k8s.tcinternal <none> <none>
kube-system kube-apiserver-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 92s 10.31.8.1 tiny-flannel-master-8-1.k8s.tcinternal <none> <none>
kube-system kube-controller-manager-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 90s 10.31.8.1 tiny-flannel-master-8-1.k8s.tcinternal <none> <none>
kube-system kube-proxy-dkvrn 1/1 Running 0 86s 10.31.8.1 tiny-flannel-master-8-1.k8s.tcinternal <none> <none>
kube-system kube-scheduler-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 92s 10.31.8.1 tiny-flannel-master-8-1.k8s.tcinternal <none> <none>
这时候我们还需要继续添加剩下的两个节点作为worker节点运行负载,直接在剩下的节点上面运行集群初始化成功时输出的命令就可以成功加入集群:
$ kubeadm join 10.31.8.1:6443 --token abcdef.0123456789abcdef --discovery-token-ca-cert-hash sha256:d7160866920c0331731ad3c1c31a6e5b6c788b5682f86971cacaa940211db9ab
[preflight] Running pre-flight checks
[preflight] Reading configuration from the cluster...
[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet
[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...
This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.
Run 'kubectl get nodes' on the control-plane to see this node join the cluster.
如果不小心没保存初始化成功的输出信息也没有关系,我们可以使用kubectl工具查看或者生成token
# 查看现有的token列表
$ kubeadm token list
TOKEN TTL EXPIRES USAGES DESCRIPTION EXTRA GROUPS
abcdef.0123456789abcdef 23h 2022-05-08T06:27:34Z authentication,signing <none> system:bootstrappers:kubeadm:default-node-token
# 如果token已经失效,那就再创建一个新的token
$ kubeadm token create
pyab3u.j1a9ld7vk03znbk8
$ kubeadm token list
TOKEN TTL EXPIRES USAGES DESCRIPTION EXTRA GROUPS
abcdef.0123456789abcdef 23h 2022-05-08T06:27:34Z authentication,signing <none> system:bootstrappers:kubeadm:default-node-token
pyab3u.j1a9ld7vk03znbk8 23h 2022-05-08T06:34:28Z authentication,signing <none> system:bootstrappers:kubeadm:default-node-token
# 如果找不到--discovery-token-ca-cert-hash参数,则可以在master节点上使用openssl工具来获取
$ openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl rsa -pubin -outform der 2>/dev/null | openssl dgst -sha256 -hex | sed 's/^.* //'
d6cdc5a3bc40cbb0ae85776eb4fcdc1854942e2dd394470ae0f2f97714dd9fb9
添加完成之后我们再查看集群的节点可以发现这时候已经多了两个node,但是此时节点的状态还是NotReady
,接下来就需要部署CNI了。
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
tiny-flannel-master-8-1.k8s.tcinternal NotReady control-plane,master 7m49s v1.23.6
tiny-flannel-worker-8-11.k8s.tcinternal NotReady <none> 2m58s v1.23.6
tiny-flannel-worker-8-12.k8s.tcinternal NotReady <none> 102s v1.23.6
flannel应该是众多开源的CNI插件中入门门槛最低的CNI之一了,部署简单,原理易懂,且相关的文档在网络上也非常丰富。
# 我们先把官方的yaml模板下载下来,然后对关键字段逐个修改
$ wget https://raw.githubusercontent.com/flannel-io/flannel/master/Documentation/kube-flannel.yml
针对kube-flannel.yml
文件,我们需要修改一些参数以适配我们的集群:
net-conf.json
参数,配置的是pod的网段,这里我们使用此前计划好的10.8.64.0/18
net-conf.json: |
{
"Network": "10.8.64.0/18",
"Backend": {
"Type": "vxlan"
}
}
修改完成之后我们直接部署即可
$ kubectl apply -f kube-flannel.yml
Warning: policy/v1beta1 PodSecurityPolicy is deprecated in v1.21+, unavailable in v1.25+
podsecuritypolicy.policy/psp.flannel.unprivileged created
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created
configmap/kube-flannel-cfg created
daemonset.apps/kube-flannel-ds created
# 查看pod是否正常运行
$ kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-6d8c4cb4d-np7q2 1/1 Running 0 14m
kube-system coredns-6d8c4cb4d-z8f5b 1/1 Running 0 14m
kube-system etcd-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 14m
kube-system kube-apiserver-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 14m
kube-system kube-controller-manager-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 14m
kube-system kube-flannel-ds-9fq4z 1/1 Running 0 12m
kube-system kube-flannel-ds-ckstx 1/1 Running 0 7m18s
kube-system kube-flannel-ds-qj55x 1/1 Running 0 8m25s
kube-system kube-proxy-bncfl 1/1 Running 0 14m
kube-system kube-proxy-lslcm 1/1 Running 0 7m18s
kube-system kube-proxy-pmwhf 1/1 Running 0 8m25s
kube-system kube-scheduler-tiny-flannel-master-8-1.k8s.tcinternal 1/1 Running 0 14m
# 查看flannel的pod日志是否有报错
$ kubectl logs -f -l app=flannel -n kube-system
集群部署完成之后我们在k8s集群中部署一个nginx测试一下是否能够正常工作。首先我们创建一个名为nginx-quic
的命名空间(namespace
),然后在这个命名空间内创建一个名为nginx-quic-deployment
的deployment
用来部署pod,最后再创建一个service
用来暴露服务,这里我们先使用nodeport
的方式暴露端口方便测试。
$ cat nginx-quic.yaml
apiVersion: v1
kind: Namespace
metadata:
name: nginx-quic
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-quic-deployment
namespace: nginx-quic
spec:
selector:
matchLabels:
app: nginx-quic
replicas: 2
template:
metadata:
labels:
app: nginx-quic
spec:
containers:
- name: nginx-quic
image: tinychen777/nginx-quic:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 80
---
apiVersion: v1
kind: Service
metadata:
name: nginx-quic-service
namespace: nginx-quic
spec:
selector:
app: nginx-quic
ports:
- protocol: TCP
port: 8080 # match for service access port
targetPort: 80 # match for pod access port
nodePort: 30088 # match for external access port
type: NodePort
部署完成后我们直接查看状态
# 直接部署
$ kubectl apply -f nginx-quic.yaml
namespace/nginx-quic created
deployment.apps/nginx-quic-deployment created
service/nginx-quic-service created
# 查看deployment的运行状态
$ kubectl get deployment -o wide -n nginx-quic
NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
nginx-quic-deployment 2/2 2 2 48s nginx-quic tinychen777/nginx-quic:latest app=nginx-quic
# 查看service的运行状态
$ kubectl get service -o wide -n nginx-quic
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
nginx-quic-service NodePort 10.8.4.218 <none> 8080:30088/TCP 62s app=nginx-quic
# 查看pod的运行状态
$ kubectl get pods -o wide -n nginx-quic
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nginx-quic-deployment-696d959797-jm8w5 1/1 Running 0 73s 10.8.66.2 tiny-flannel-worker-8-12.k8s.tcinternal <none> <none>
nginx-quic-deployment-696d959797-lwcqz 1/1 Running 0 73s 10.8.65.2 tiny-flannel-worker-8-11.k8s.tcinternal <none> <none>
# 查看IPVS规则
$ ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 172.17.0.1:30088 rr
-> 10.8.65.2:80 Masq 1 0 0
-> 10.8.66.2:80 Masq 1 0 0
TCP 10.8.4.218:8080 rr
-> 10.8.65.2:80 Masq 1 0 0
-> 10.8.66.2:80 Masq 1 0 0
TCP 10.8.64.0:30088 rr
-> 10.8.65.2:80 Masq 1 0 0
-> 10.8.66.2:80 Masq 1 0 0
TCP 10.8.64.1:30088 rr
-> 10.8.65.2:80 Masq 1 0 0
-> 10.8.66.2:80 Masq 1 0 0
TCP 10.31.8.1:30088 rr
-> 10.8.65.2:80 Masq 1 0 0
-> 10.8.66.2:80 Masq 1 0 0
最后我们进行测试,这个nginx-quic的镜像默认情况下会返回在nginx容器中获得的用户请求的IP和端口
# 首先我们在集群内进行测试
# 直接访问pod,这时候显示的IP是master节点上面的flannel.1网卡的IP
$ curl 10.8.66.2:80
10.8.64.0:38958
$ curl 10.8.65.2:80
10.8.64.0:46484
# 直接访问service的ClusterIP,这时请求会被转发到pod中
$ curl 10.8.4.218:8080
10.8.64.0:26305
# 直接访问nodeport,这时请求会被转发到pod中,不会经过ClusterIP
$ curl 10.31.8.1:30088
10.8.64.0:6519
# 接着我们在集群外进行测试
# 直接访问三个节点的nodeport,这时请求会被转发到pod中,不会经过ClusterIP
# 由于externalTrafficPolicy默认为Cluster,nginx拿到的IP就是我们访问的节点的flannel.1网卡的IP
$ curl 10.31.8.1:30088
10.8.64.0:50688
$ curl 10.31.8.11:30088
10.8.65.1:41032
$ curl 10.31.8.12:30088
10.8.66.0:11422