- 从零掌握二叉树序列化:Swift实战详解,让你的树结构飞起来!
网罗开发
Swiftswift开发语言ios
文章目录摘要描述题解答案序列化思路反序列化思路题解代码分析示例测试及结果时间复杂度空间复杂度总结摘要今天咱们来聊聊二叉树的一个经典问题:序列化和反序列化。简单来说,就是把一棵二叉树转换成字符串形式(序列化),然后再把这个字符串还原成原来的二叉树(反序列化)。这个问题在实际开发中特别有用,比如你想把一棵树结构保存到文件里,或者通过网络传输给其他服务,都需要用到这种技术。描述想象一下,你正在开发一个社
- Python Day58
别勉.
python机器学习python信息可视化数据分析
Task:1.时序建模的流程2.时序任务经典单变量数据集3.ARIMA(p,d,q)模型实战4.SARIMA摘要图的理解5.处理不平稳的2种差分a.n阶差分—处理趋势b.季节性差分—处理季节性建立一个ARIMA模型,通常遵循以下步骤:数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。平稳性检验:对原始序列进行ADF检验。如果p值>0.05,说明序列非平稳,需要进行差分。确定差分次数d:进行
- [转载] [Mark]分布式存储必读论文
weixin_30945039
大数据数据库
原文:http://50vip.com/423.html分布式存储泛指存储存储和管理数据的系统,与无状态的应用服务器不同,如何处理各种故障以保证数据一致,数据不丢,数据持续可用,是分布式存储系统的核心问题,也是极具挑战的问题。本文总结了分布式存储领域的经典论文,供大家参考。TheGoogleFileSystem.SanjayGhemawat,HowardGobioff,andShun-TakLeu
- 【实习日记】day02
verse_armour
实习日记pythonlinux开发语言
今日工作小结与技术备忘今天我们主要围绕一个基于Poetry和Conda的MONAI检测项目,解决了一系列从环境配置到依赖安装的复杂问题。整个过程就像一次深度探案,最终成功理清了所有障碍。一、今日遇到的主要问题与解决方案我们今天解决了四个核心的“拦路虎”:1.Poetry安装与网络问题现象:最初,在安装Poetry依赖时,出现Nomatchingdistributionfoundfordulwich
- 设计模式精讲 Day 19:观察者模式(Observer Pattern)
在未来等你
23种设计模式精讲设计模式Java面向对象软件架构
【设计模式精讲Day19】观察者模式(ObserverPattern)开篇在“设计模式精讲”系列的第19天,我们聚焦于观察者模式(ObserverPattern)。作为行为型设计模式之一,观察者模式是实现对象间一对多依赖关系的经典方式,广泛应用于事件驱动系统、状态变化通知、消息订阅等场景。本篇文章将从理论到实践全面讲解观察者模式,包括其核心思想、结构组成、适用场景、代码实现、优缺点分析、实际案例和
- 教育技术学读计算机论文的提示词
东方-教育技术博主
学术学习相关AI
角色:你是一位经验丰富的计算机专业教授,擅长用通俗易懂的语言向初学者解释复杂概念。我现在正在学习阅读计算机科学领域的算法论文,但我的基础比较薄弱(了解编程基础如变量、循环、函数,了解一点数据结构和算法概念如数组、链表、排序,但对高级术语和数学证明不熟悉)。同时又是一个教育技术学教授。任务:请帮我解释以下论文内容中我不理解的部分。如果遇到初学者可能不懂的地方,我需要你用最清晰、最简洁、最易懂的方式解
- 详解MATLAB/Simulink通信系统建模与仿真代码及PPT
甄亚凌
详解MATLAB/Simulink通信系统建模与仿真代码及PPT项目地址:https://gitcode.com/open-source-toolkit/376e9欢迎来到这个专注于通信系统建模与仿真的开源资源库。本仓库致力于为MATLAB与Simulink的学习者和研究者提供详尽、实用的教学资源,特别是针对通信系统领域的实践者。通过这一平台,您将获取到全面覆盖各章节的经典案例,不仅包含精心编写的
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- 【LeetCode 热题 100】53. 最大子数组和——(解法二)动态规划
xumistore
LeetCodeleetcode动态规划算法java
Problem:53.最大子数组和题目:给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。LeetCode热题100】53.最大子数组和——(解法一)前缀和文章目录整体思路完整代码时空复杂度时间复杂度:O(N)空间复杂度:O(N)整体思路这段代码同样旨在解决“最大子数组和”问题。它采用的是一种非常经典且标准的动态规划
- 【LeetCode 热题 100】76. 最小覆盖子串——(解法一)滑动窗口+数组
xumistore
LeetCodeleetcode算法职场和发展java
Problem:76.最小覆盖子串给你一个字符串s、一个字符串t。返回s中涵盖t所有字符的最小子串。如果s中不存在涵盖t所有字符的子串,则返回空字符串“”。文章目录整体思路完整代码时空复杂度时间复杂度:O(|S|+|t|)空间复杂度:O(k)或O(1)整体思路这段代码旨在解决一个经典的字符串问题:最小窗口子串(MinimumWindowSubstring)。问题要求在主字符串S中,找出一个包含目标
- I2C子系统面试指南:基础原理、经典问答与答题技巧全解析
嵌入式Jerry
Linux+内核面试职场和发展linux服务器运维单片机java
I2C子系统面试指南:基础原理、经典问答与答题技巧全解析关于本篇博文,B站视屏讲解链接,点击进入深度学习一、引言:为什么要深入掌握I2C子系统?在嵌入式、驱动开发、BSP移植、甚至AIoT行业,I2C几乎是绕不开的“基础功”。不管你是应聘Linux驱动开发、嵌入式软件工程师、SoC底层支持,还是BSP/系统调试,I2C的核心架构和调试经验都是面试高频关注点。掌握I2C子系统,关键不止是能写驱动,更
- 图论算法的大家庭——c++中的图论算法
imlarry0616
深度优先算法图论
图论算法是处理图结构问题的核心工具,广泛应用于路径规划、社交网络分析、计算机网络等领域。以下从基础概念、经典算法及其代码实现展开详细介绍,涵盖DFS、BFS、最短路径、最小生成树等核心内容,并附C++代码示例及注释。一、图的基础概念图的定义:由顶点(Vertex)集合V和边(Edge)集合E组成,记作G=(V,E)。分类:无向图:边无方向(如社交网络中的朋友关系)。有向图:边有方向(如网页链接关系
- Day52|动态规划part13:300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组
QHG7C0
数据结构与算法(二刷)动态规划算法
子序列问题是动态规划解决的经典问题300.最长递增子序列首先我们明确一下子序列的定义,子序列与子串(必须要连续)不同,子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。一看没啥思路,都忘光了。。。也不知道咋用动态规划做。确定dp数组含义及下标dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度。这里明确dp[i]的含义很重要,因为这道题我们返回的结
- 《ChromaGAN》论文简读及demo运行(萌新手记)
kkpeach
学习手记python机器学习计算机视觉
论文题目:《ChromaGAN:AdversarialPictureColorizationwithSemanticClassDistribution》《具有语义类别分布的对抗图片着色》论文地址:https://arxiv.org/pdf/1907.09837.pdf源码地址:https://github.com/pvitoria/ChromaGAN声明:仅学习用途。这是WACV2020收录的一篇
- Linux-读者写者问题
“αβ”
Linuxlinux运维服务器c++多线程git云服务器
目录问题描述读写锁主要思想代码伪实现读者优先算法写者优先算法读者写者公平算法库函数的学习读写锁接口读写锁使用案例问题描述在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。给这种代码段加锁,会极大地降低我们程序的效率。这类问题就归结为读者写者问题。那么有没有一种方法,可以专
- 十年磨一剑,笔耕不辍:我的创作之路与质量工程情怀
blues_C
创作纪念日
十年磨一剑,笔耕不辍:我的创作之路与质量工程情怀前言机缘:从实战沉淀到知识共享收获:从数字增长到精神富足日常:创作,已是生活的一部分憧憬:深耕质量,智创未来前言时光荏苒,转眼间我的技术博客也迎来了又一个重要的里程碑。回首这些年与代码、与测试、与技术文字为伴的日子,心中充满了感慨与感恩。感谢CSDN这个平台,也感谢每一位阅读、点赞、评论和支持我的读者朋友。正是这份互动与认可,让我在这条创作之路上乐此
- MySQL(112)如何选择读写分离策略?
辞暮尔尔-烟火年年
MySQLmysql数据库
选择读写分离策略是实施读写分离的关键一步。常见的读写分离策略包括简单的读写分离和基于负载均衡的读写分离。为了实现这些策略,我们需要动态地选择数据源。下面详细介绍如何实现基于SpringBoot的读写分离,并结合代码示例展示不同策略的实现。读写分离策略简单读写分离:在读操作中选择从库,在写操作中选择主库。基于负载均衡的读写分离:在读操作中,从多个从库中选择一个来分担读负载。环境准备假设我们使用Spr
- 经典文生图的GAN模型-HDGAN介绍
这张生成的图像能检测吗
GAN系列生成对抗网络人工智能神经网络计算机视觉深度学习机器学习
简介简介:这篇论文提出了一种名为HDGAN(Hierarchically-nestedDiscriminatorsGAN)的新方法,用于解决文本到图像合成这一挑战性任务。该方法的主要创新点包括:分层嵌套对抗目标:在网络层次结构内部引入配套的分层嵌套对抗目标,正则化中层表示并辅助生成器训练单流生成器架构:提出可扩展的单流生成器架构,更好地适应联合鉴别器并将生成图像提升到高分辨率多目的对抗损失:采用多
- 关联规则算法学习—Apriori
Did然
数据挖掘算法学习python数据挖掘
关联规则算法学习—Apriori一、实验项目:关联规则算法学习项目性质:设计型二、实验目的:理解并掌握关联规则经典算法Apriori算法,理解算法的原理,能够实现算法,并对给定的数据集进行关联规则挖掘三、实验内容:1、实现Apriori算法,验证算法的正确性,并将算法应用于给定的数据集Groceries,根据设定的支持度和置信度,挖掘出符合条件的频繁项集及关联规则。2、挑选几个有代表性的频繁项集和
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 大语言模型LLM原理篇
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 文件系统中元数据的隐患——缓存
小可爱amour
文件系统对象系统缓存
热点文件(尤其是大文件)在查询或下载过程中,涉及大量的元信息访问。如果元信息较大且访问QPS较大时,就会导致实例网卡打满、CPU爆表,造成缓存失效(缓存击穿);流量直接打到DB上,造成大量读请求超时、连接打满、机器挂掉(服务雪崩)。直接对服务可用性造成打击,一般都是重大事故。造成这种结果的本质原因是缓存设计和使用不合理。直接原因是缓存对象指向的文件是热门资源。一般文件系统很少关心文件或者文件对象指
- 【MySQL】事务
七七&556
面试学习路线阿里巴巴mysql数据库
MySQL(六)事务一、事务的特性1.原子性2.一致性3.持久性4.隔离性4.1无隔离4.1.1隔离级别4.1.2执行效果4.2写加锁4.2.1隔离级别4.2.2脏读解决4.2.3执行效果4.3读加锁4.3.1不一致解决4.3.2执行效果4.4读写加锁4.4.1隔离级别4.4.2不可重复读解决4.4.3执行效果4.5串行化4.5.1隔离级别4.5.2幻读解决4.5.3执行效果二、事务的使用1.开启
- UI前端与大数据的深度融合:打造智慧应用的新生态
前端开发与ui设计的老司机
ui前端大数据
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!在数字化转型的浪潮中,UI前端与大数据正逐渐成为推动智慧应用发展的核心力量。UI前端作为用户与应用程序交互的直接界面,负责提供直观、便捷且吸引人的用户体验;而大数据则凭借其强大的数据收集、分析和预测能力,为应用程序
- 智能新纪元:大语言模型如何重塑电商“人货场”经典范式
黑巧克力可减脂
AIGC语言模型人工智能自然语言处理
开篇引言“善战者,求之于势,不责于人。”——《孙子兵法·兵势篇》当全球电商交易额突破6.3万亿美元(Statista2024),增长引擎却显露疲态。流量红利消退、同质化竞争加剧、消费者需求碎片化——传统“人货场”理论正遭遇前所未有的挑战。而大语言模型(LLM)的出现,恰似一柄重铸商业逻辑的“科技之锤”,正在为电商领域开启一场静水深流的革命性变革。基石重塑:当“人货场”遇见大模型智能经典理论再审视:
- C语言经典题目2
一支闲人
C语言c语言基础知识适用新手小白
1.字符串长度计算一个字符串的长度并输出本体主要运用了strlen库函数的应用#include#includeintmain(){charste[100];intlen;printf("Enterastring");scanf("%s",str);len=strlen(str);printf("Lengthof'%s'=%d",str,len);return0;}2.字符串反转将一个字符串反转并输
- (Note)音频向量化表示
音频向量化表示经典语音特征(MFCC等)语音信号的传统特征提取方法包括MFCC(梅尔倒谱系数)、PLP等,用于描述语音的频谱包络信息。这些特征设计依据生理听觉模型,在ASR、情感识别等任务中长期有效。但它们仍属浅层特征,无法自动学习更高阶的语言和语音信息,对说话人和环境的鲁棒性有限,通常需配合复杂模型来提高性能。梅尔倒谱系数特征示意图自监督语音模型(Wav2Vec、HuBERT等)近年来,语音领域
- C# WPF + Helix Toolkit 实战:用两种方式打造“六面异色立方体”
凌霜残雪
WPF+3D数字孪生实战wpf3d材质数字孪生
引言在3D图形开发中,给立方体的每个面设置不同颜色是一个非常经典且实用的小项目。它不仅帮助我们理解3D网格构造、材质绑定和光照渲染的基本原理,还为我们后续学习更复杂的模型操作打下基础。在这篇博客中,我们将使用HelixToolkit(WPFSharpDX版本),通过两种方法来实现一个“六面异色立方体”,并详细分析它们的优缺点与适用场景。效果演示方法一:自动解析网格——CreateColoredBo
- 深入理解栈的合法弹出序列验证算法
引言在计算机科学中,栈(Stack)是一种非常重要的数据结构,它遵循"后进先出"(LIFO)的原则。栈在编程语言实现、算法设计、系统调用等方面有着广泛的应用。今天,我们将深入探讨一个关于栈的经典问题:如何验证一个给定的弹出序列是否是某个压入序列的合法弹出序列。这个问题看似简单,却蕴含着栈操作的精髓,也是许多算法面试中的常见题目。问题描述给定两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列
- python实现回文数的判断简单理解
回文数的判断及解析第一种方法:第二种方法:回文数:简单来说就是,无论是从前往后读还是从后往前读,都是一样的第一种方法:通过字符串的一些特定的功能来判断是不是回文数a=str(input("请输入你要输入的数字:"))#输入字符串b=a[::-1]#倒序输出ifa==b:#判断是否相等print(f'{a}是回文数')else:print('{}不是回文数'.format(a))#format方法输
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla