Spark-Streaming之window滑动窗口应用

Spark-Streaming之window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作。每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD。

网官图中所示,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算。所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑动间隔,而且这两个参数值都必须是batch间隔的整数倍。

Spark Streaming对滑动窗口的支持,是比Storm更加完善和强大的。




Spark-Streaming对滑动窗口支持的转换操作:



热点搜索词滑动统计,每隔10秒钟,统计最近60秒钟的搜索词的搜索频次,并打印出排名最靠前的3个搜索词以及出现次数

scala版本:

package com.spark.streaming

import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.SparkConf

/**
 * @author Ganymede
 */
object WindowHotWordS {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("WindowHotWordS").setMaster("local[2]")

    //Scala中,创建的是StreamingContext
    val ssc = new StreamingContext(conf, Seconds(5))

    val searchLogsDStream = ssc.socketTextStream("spark1", 9999)

    val searchWordsDStream = searchLogsDStream.map { searchLog => searchLog.split(" ")(1) }

    val searchWordPairDStream = searchWordsDStream.map { searchWord => (searchWord, 1) }

	// reduceByKeyAndWindow
	// 第二个参数,是窗口长度,这是是60秒
	// 第三个参数,是滑动间隔,这里是10秒
	// 也就是说,每隔10秒钟,将最近60秒的数据,作为一个窗口,进行内部的RDD的聚合,然后统一对一个RDD进行后续计算
	// 而是只是放在那里
	// 然后,等待我们的滑动间隔到了以后,10秒到了,会将之前60秒的RDD,因为一个batch间隔是5秒,所以之前60秒,就有12个RDD,给聚合起来,然后统一执行reduceByKey操作
	// 所以这里的reduceByKeyAndWindow,是针对每个窗口执行计算的,而不是针对 某个DStream中的RDD
	// 每隔10秒钟,出来 之前60秒的收集到的单词的统计次数
    val searchWordCountsDStream = searchWordPairDStream.reduceByKeyAndWindow((v1: Int, v2: Int) => v1 + v2, Seconds(60), Seconds(10))

	
    val finalDStream = searchWordCountsDStream.transform(searchWordCountsRDD => {
      val countSearchWordsRDD = searchWordCountsRDD.map(tuple => (tuple._2, tuple._1))
      val sortedCountSearchWordsRDD = countSearchWordsRDD.sortByKey(false)
      val sortedSearchWordCountsRDD = sortedCountSearchWordsRDD.map(tuple => (tuple._1, tuple._2))
      val top3SearchWordCounts = sortedSearchWordCountsRDD.take(3)

      for (tuple <- top3SearchWordCounts) {
        println("result : " + tuple)
      }

      searchWordCountsRDD
    })

    finalDStream.print()

    ssc.start()
    ssc.awaitTermination()
  }
}




你可能感兴趣的:(Spark,spark,streaming,实时)