opencv python 训练自己的分类器

源码下载

一、分类器制作

1.样本准备

收集好你所需的正样本,和负样本,分别保存在不同文件夹

opencv python 训练自己的分类器_第1张图片 

opencv python 训练自己的分类器_第2张图片 

在pycharm新建项目,项目结构如下:has_mask文件夹放置正样本,no_mask文件夹放置负样本

opencv python 训练自己的分类器_第3张图片

 安装opencv,把opencv包里的文件复制到项目mask文件夹下

opencv python 训练自己的分类器_第4张图片

 

 2.样本制作

(1)图片重命名

方便对样本进行批量处理,我们需要对样本进行重命名,重命名代码如下:

import os
# 正样本的路径
path = r'E:\pycharmWorkspace\maskTest\mask\has_mask'
filelist = os.listdir(path)
# 开始文件名1000.jpg
count = 1000
for file in filelist:
    Olddir = os.path.join(path, file)
    if os.path.isdir(Olddir):
        continue
    filename = os.path.splitext(file)[0]
    filetype = os.path.splitext(file)[1]
    Newdir = os.path.join(path, str(count) + filetype)
    os.rename(Olddir, Newdir)
    count += 1

# 负样本的路径
path = r'E:\pycharmWorkspace\maskTest\mask\no_mask'
filelist = os.listdir(path)
# 开始文件名10000.jpg
count = 10000
for file in filelist:
    Olddir = os.path.join(path, file)
    if os.path.isdir(Olddir):
        continue
    filename = os.path.splitext(file)[0]
    filetype = os.path.splitext(file)[1]
    Newdir = os.path.join(path, str(count) + filetype)
    os.rename(Olddir, Newdir)
    count += 1


(2)修改图片像素

将正样本尺寸统一修改为20×20来提高模型训练精度,负样本数据集像素不低于50×50

import cv2

# 代表正数据集中开始和结束照片的数字
for n in range(1000, 1099):
    path = r'C:\Users\Administrator\Desktop\mask\mask/' + str(n) + '.jpg'
    # 读取图片
    img = cv2.imread(path)
    img = cv2.resize(img, (20, 20))  # 修改样本像素为20x20
    cv2.imwrite(r'C:\Users\Administrator\Desktop\mask\mask/' + str(n) + '.jpg', img)
    n += 1

# 代表正数据集中开始和结束照片的数字
for n in range(10000, 10099):
    path = r'C:\Users\Administrator\Desktop\mask\no_mask/' + str(n) + '.jpg'
    # 读取图片
    img = cv2.imread(path)
    img = cv2.resize(img, (80, 80))  # 修改样本像素为80x80
    cv2.imwrite(r'C:\Users\Administrator\Desktop\mask\no_mask/' + str(n) + '.jpg', img)
    n += 1

 这里用到了python opencv库,在pycharm 控制台下用pip安装,以下命令可以解决opencv库安装速度慢的问题

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python --no-cache-dir

opencv python 训练自己的分类器_第5张图片

 

3.生成资源记录文件 

在控制台进入has_mask文件夹

 输入以下代码即可创建路径文件

dir /b/s/p/w *.jpg > have_mask.txt

此时在have_mask下就会产生一个have_mask.txt文件,并将其放到mask目录opencv python 训练自己的分类器_第6张图片

 进入no_mask文件夹,重复上述步骤即可

最后结果如下

opencv python 训练自己的分类器_第7张图片

 之后要对正样本进行预处理,在have_mask.txt末尾加入1 0 0 20 20执行以下代码即可

#后缀
Houzhui=r" 1 0 0 20 20"
filelist = open(r'E:\pycharmWorkspace\maskTest\mask\have_mask.txt','r+',encoding = 'utf-8')
line = filelist.readlines()
for file in line:
    file=file.strip('\n')+Houzhui+'\n'
    print(file)
    filelist.write(file)
    
filelist = open(r'E:\pycharmWorkspace\maskTest\mask\no_mask.txt','r+',encoding = 'utf-8')
line = filelist.readlines()
for file in line:
    file=file.strip('\n')+Houzhui+'\n'
    print(file)
    filelist.write(file)

 4.生成vec文件

在terminal控制台进入到 mask 文件夹,然后输入如下命令

opencv_createsamples.exe -vec havemask.vec -info have_mask.txt -num 400 -w 20 -h 20

opencv_createsamples.exe参数的说明:


-vec 
	输出文件,内含用于训练的正样本。他应该有一个.vec文件扩展名。

-info 
	这是指定输入示例集合的文件的名字,包括文件名和在图像中示例目标的位置(例如自己创建的.dat
	文件)。

-img 
	这是-info的替代(必须提供其中一个)。使用-img,你可以提供单个裁剪的正向示例。在使用-img的
	模式中,将产生多个输出,且都来自于这一个输入。

-bg 
	背景图像的描述文件,文件中包含一系列的图像文件名,这些图像将被随机选作物体的背景。

-num 
	生成的正样本的数目。

-bgcolor 
	背景颜色(目前为灰度图);背景颜色表示透明颜色。因为图像压缩可造成颜色偏差,颜色的容差
	可以由 -bgthresh 指定。所有处于 bgcolor-bgthresh 和 bgcolor+bgthresh 之间的像素都被设置为
	透明像素。

-bgthresh 

-inv
	如果指定该标志,前景图像的颜色将翻转。

-randinv
	如果指定该标志,颜色将随机地翻转。

-maxidev 
	前景样本里像素的亮度梯度的最大值。

-maxxangle 
	X轴最大旋转角度,必须以弧度为单位。

-maxyangle 
	Y轴最大旋转角度,必须以弧度为单位。

-maxzangle 
	Z轴最大旋转角度,必须以弧度为单位。

-show
	很有用的调试选项。如果指定该选项,每个样本都将被显示。如果按下 Esc 键,程序将继续创建样
	本但不再显示。

-w 
	输出样本的宽度(以像素为单位)。

-h 
	输出样本的高度(以像素为单位)。

 opencv python 训练自己的分类器_第8张图片

 

 得到havemask.vec文件  

opencv python 训练自己的分类器_第9张图片

 5.训练模型

在当前文件夹下新建start.bat文件加入以下代码

opencv_traincascade.exe -data xml -vec havemask.vec -bg no_mask.txt -numPos 100-numNeg 100-numStages 20 -w 20 -h 20 -mode ALL
 
pause

opencv python 训练自己的分类器_第10张图片

在terminal执行start.bat

训练完成后在xml文件下即可看到以下文件,第一个文件即为我们训练好的分类器

opencv python 训练自己的分类器_第11张图片 

二、检验分类器

 输入以下代码

import cv2
#加载分类器
mask_detector = cv2.CascadeClassifier(r'E:\pycharmWorkspace\maskTest\mask\xml\cascade.xml')
img = cv2.imread(r'D:\0001.jpg')
#转成灰度图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#进行预测
mask_face = mask_detector.detectMultiScale(gray, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (50,50), (200, 200))
for (x2, y2, w2, h2) in mask_face:
    cv2.rectangle(img, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 0), 2)
    cv2.putText(img, "have_mask", (x2, y2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
    cv2.imshow('mask', img)
cv2.imshow('mask', img)
cv2.imwrite(r'D:/test.jpg', img)
cv2.waitKey()

 得到如下测试结果 ,效果不是很好

opencv python 训练自己的分类器_第12张图片

 

源码下载

你可能感兴趣的:(pyhon,opencv,opencv,python,分类器)