线性代数的学习和整理2:用EXCEL进行矩阵计算

目录

矩阵的各种概念

矩阵的维数

矩阵的基底

矩阵的列向量

矩阵的平直概念

矩阵的乘法的映射图

矩阵的秩

矩阵的乘法具有不可交换性

矩阵的模


矩阵的各种概念

矩阵的维数

  • (a1,a2)是2维的
  • (a1,a2,a3)是3维的
  • (a1,a2,a3... ... an)是n维的

矩阵的基底

  • (a1,a2)是2维的,对应2个基底e1,e2
  • (a1,a2,a3)是3维的,对应3个基底e1,e2
  • (a1,a2,a3... ... an)是n维的, 对应n个基底e1,e2.....en

矩阵的列向量

  • 矩阵的每一列向量
  • 都代表这个方向的基底ei 走到了对应列向量的位置。
  • 比如

矩阵的平直概念

即矩阵需要时线性增长的意思把

比如矩阵10,10个矩阵不能缩小为90,而必须是100

矩阵的乘法的映射图

矩阵的秩

矩阵的乘法具有不可交换性

  • A*B != B*A
  • A左乘*B != A右乘*B
  • 假设A!=0, B!=0, 但是可能存在 A*B=0
  • 假设A!=0,  但是可能存在 A*A=0
  • 如果已知 A*B=C,那么 B= A-*C ,但是B != C*A-

线性代数,矩阵,属于代数学,不属于几何学,

想理解矩阵乘法的几何意义有点难

矩阵的模

你可能感兴趣的:(线性代数,学习,矩阵)