2021年Linux技术总结(二):kernel

一、内核简介

​ 简介并没有讲Linux内核的历史故事,只是做了Linux 内核框架的描述,方便从大局来看整个内核部分,这样可以快速了解内核的功能。

1.1 Linux 内核图

​ 首先对Linux kernel的整体框架有一个大致的了解,方框内是Linux kernel,下方是硬件设备。

2021年Linux技术总结(二):kernel_第1张图片

​ 接下来,是一个更加详细的图,这个图是makelinux网站提供的一幅非常经典的Linux内核图,涵盖了内核最为核心的方法. Linux除了驱动开发外,还有很多通用子系统,比如CPU, memory, file system等核心模块,即便不做底层驱动开发, 掌握这些模块对于加深理解整个系统运转机制还是很有帮助。下面是源网站,可以对Linux kernel map内容做详细的了解:https://makelinux.github.io/kernel/map/

1.2 Linux kernel五大子系统

​ 现代计算机(无论是PC还是嵌入式系统)的标准组成,就是CPU、Memory(内存和外存)、输入输出设备、网络设备和其它的外围设备。所以为了管理这些设备,Linux内核提出了5个子系统:

  • Process Scheduler,也称作进程管理、进程调度,负责管理CPU资源,以便让各个进程可以以尽量公平的方式访问CPU
  • Memory Manager,内存管理。负责管理Memory(内存)资源,内存管理会提供虚拟内存的机制
  • VFS(Virtual File System),虚拟文件系统,Linux内核将不同功能的外部设备抽象为可以通过统一的文件操作接口(open、close、read、write等)来访问
  • Network,网络子系统。负责管理系统的网络设备,并实现多种多样的网络标准
  • IPC(Inter-Process Communication),进程间通信。IPC不管理任何的硬件,它主要负责Linux系统中进程之间的通信

1.3 Kernel源码目录结构

对Linux kernel 框架做一个整体了解后,还需要熟悉一个Linux kernel目录结构,这对Linux 是非常重要的,Linux的思想便是一切皆文件。

include/            ---- 内核头文件,需要提供给外部模块(例如用户空间代码)使用。
kernel/             ---- Linux内核的核心代码,包含了3.2小节所描述的进程调度子系统,以及和进程调度相关的模块。
mm/                 ---- 内存管理子系统(3.3小节)。
fs/                 ---- VFS子系统(3.4小节)。
net/                ---- 不包括网络设备驱动的网络子系统(3.5小节)。
ipc/                ---- IPC(进程间通信)子系统。
arch/               ---- 体系结构相关的代码,例如arm, x86等等。 
arch/mach/          ---- 具体的machine/board相关的代码。 
arch/include/asm/   ---- 体系结构相关的头文件。 
arch/boot/dts       ---- 设备树(Device Tree)文件。
init/               ---- Linux系统启动初始化相关的代码。 
block/              ---- 提供块设备的层次。 
sound/              ---- 音频相关的驱动及子系统,可以看作“音频子系统”。 
drivers/            ---- 设备驱动(在Linux kernel 3.10中,设备驱动占了49.4的代码量)。
lib/                ---- 实现需要在内核中使用的库函数,例如CRC、FIFO、list、MD5等。 
crypto/             ----- 加密、解密相关的库函数。 
security/           ---- 提供安全特性(SELinux)。 
virt/               ---- 提供虚拟机技术(KVM等)的支持。 
usr/                ---- 用于生成initramfs的代码。 
firmware/           ---- 保存用于驱动第三方设备的固件。
samples/            ---- 一些示例代码。 
tools/              ---- 一些常用工具,如性能剖析、自测试等。
Kconfig, Kbuild, Makefile, scripts/ ---- 用于内核编译的配置文件、脚本等。
COPYING             ---- 版权声明。 
MAINTAINERS         ----维护者名单。 
CREDITS             ---- Linux主要的贡献者名单。 
REPORTING-BUGS      ---- Bug上报的指南。
Documentation, README ---- 帮助、说明文档。

二、kernel启动流程

​ 下面分析一下Linux内核的启动流程,熟悉Linux内核的启动流程,会在一定程度上加深对Linux kernel的结构理解。

2021年Linux技术总结(二):kernel_第2张图片

Linux kernel 启动流程,大的方向上是:

  • 进入入口函数stext(老版本的是kernel_entry);
  • 信息验证,如CPU、设备树、
  • 初始化内核配置;
  • 调用init进程,内核转至用户态;
  • 初始化内核、释放内存、调整内存策略;
  • 配置设备树、初始化驱动和驱动子系统、挂载根文件系统;
  • 使能MMC

2.1 入口函数

​ 通过arch/arm/kernel/vmlinux.lds脚本链接文件查看Linux kernel内核入口时stext,然后我们通过搜索得知,stext定义在arch/arm/kernel/head.S中,函数代码如下:

ENTRY(stext)
 ARM_BE8(setend	be )			@ ensure we are in BE8 mode

 THUMB(	adr	r9, BSYM(1f)	)	@ Kernel is always entered in ARM.
 THUMB(	bx	r9		)			@ If this is a Thumb-2 kernel,
 THUMB(	.thumb			)		@ switch to Thumb now.
 THUMB(1:			)

#ifdef CONFIG_ARM_VIRT_EXT
	bl	__hyp_stub_install
#endif
	@ ensure svc mode and all interrupts masked
	safe_svcmode_maskall r9

	mrc	p15, 0, r9, c0, c0			@ get processor id
	bl	__lookup_processor_type		@ r5=procinfo r9=cpuid
	movs	r10, r5					@ invalid processor (r5=0)?
 THUMB( it	eq )					@ force fixup-able long branch encoding
	beq	__error_p					@ yes, error 'p'

#ifdef CONFIG_ARM_LPAE
	mrc	p15, 0, r3, c0, c1, 4		@ read ID_MMFR0
	and	r3, r3, #0xf				@ extract VMSA support
	cmp	r3, #5						@ long-descriptor translation table format?
 THUMB( it	lo )					@ force fixup-able long branch encoding
	blo	__error_lpae				@ only classic page table format
#endif

#ifndef CONFIG_XIP_KERNEL
	adr	r3, 2f
	ldmia	r3, {r4, r8}
	sub	r4, r3, r4			@ (PHYS_OFFSET - PAGE_OFFSET)
	add	r8, r8, r4			@ PHYS_OFFSET
#else
	ldr	r8, =PLAT_PHYS_OFFSET		@ always constant in this case
#endif

	bl	__vet_atags
#ifdef CONFIG_SMP_ON_UP
	bl	__fixup_smp
#endif
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
	bl	__fixup_pv_table
#endif
	bl	__create_page_tables

	/*
	 * The following calls CPU specific code in a position independent
	 * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
	 * xxx_proc_info structure selected by __lookup_processor_type
	 * above.  On return, the CPU will be ready for the MMU to be
	 * turned on, and r0 will hold the CPU control register value.
	 */
	ldr	r13, =__mmap_switched		@ address to jump to after
									@ mmu has been enabled
	adr	lr, BSYM(1f)				@ return (PIC) address
	mov	r8, r4						@ set TTBR1 to swapper_pg_dir
	ldr	r12, [r10, #PROCINFO_INITFUNC]
	add	r12, r12, r10
	ret	r12
1:	b	__enable_mmu
ENDPROC(stext)

通过注释,我们可以知道,进入内核的前提是:MMU = off, D-cache = off, I-cache = dont care, r0 = 0, r1 = machine nr, r2 = atags or dtb pointer.MMU、D-cache关闭,I-cache随意,r0是0,ri保存正确的机械ID,r2保存设备树首地址(atags不知道啥)。
然后stext流程便是:

  • 调用safe_svcmode_maskall ,进入svc模式,关闭所有中断;
  • 调用__lookup_processor_type确定该内核与CPU是否兼容,兼容的话获取procinfo信息;
  • 调用 __vet_atags 验证设备树;
  • 调用__create_page_tables创建页表;
  • 调用__mmap_switched函数,保存返回地址;
  • 最后调用 __enable_mmu函数使能 MMC。

顺便提下__mmap_switched函数,因为它最终会调用start_kernel函数,代码在arch/arm/kernel/head-common.S中,内容如下:

__mmap_switched:
	adr	r3, __mmap_switched_data

	ldmia	r3!, {r4, r5, r6, r7}
	cmp	r4, r5				@ Copy data segment if needed
1:	cmpne	r5, r6
	ldrne	fp, [r4], #4
	strne	fp, [r5], #4
	bne	1b

	mov	fp, #0				@ Clear BSS (and zero fp)
1:	cmp	r6, r7
	strcc	fp, [r6],#4
	bcc	1b

 ARM(	ldmia	r3, {r4, r5, r6, r7, sp})
 THUMB(	ldmia	r3, {r4, r5, r6, r7}	)
 THUMB(	ldr	sp, [r3, #16]		)
	str	r9, [r4]			@ Save processor ID
	str	r1, [r5]			@ Save machine type
	str	r2, [r6]			@ Save atags pointer
	cmp	r7, #0
	strne	r0, [r7]			@ Save control register values
	b	start_kernel
ENDPROC(__mmap_switched)

2.2 启动内核

在倒数第二行,调用了start_kernel函数,start_kernel函数定义在文件 init/main.c,它会调用很多函数完成Linux的启动工作,先附上代码,以后再细说:

asmlinkage __visible void __init start_kernel(void)
{
	char *command_line;
	char *after_dashes;

	/*
	 * Need to run as early as possible, to initialize the
	 * lockdep hash:
	 */
	lockdep_init();
	set_task_stack_end_magic(&init_task);
	smp_setup_processor_id();
	debug_objects_early_init();

	/*
	 * Set up the the initial canary ASAP:
	 */
	boot_init_stack_canary();

	cgroup_init_early();

	local_irq_disable();
	early_boot_irqs_disabled = true;

/*
 * Interrupts are still disabled. Do necessary setups, then
 * enable them
 */
	boot_cpu_init();
	page_address_init();
	pr_notice("%s", linux_banner);
	setup_arch(&command_line);
	mm_init_cpumask(&init_mm);
	setup_command_line(command_line);
	setup_nr_cpu_ids();
	setup_per_cpu_areas();
	smp_prepare_boot_cpu();	/* arch-specific boot-cpu hooks */

	build_all_zonelists(NULL, NULL);
	page_alloc_init();

	pr_notice("Kernel command line: %s\n", boot_command_line);
	parse_early_param();
	after_dashes = parse_args("Booting kernel",
				  static_command_line, __start___param,
				  __stop___param - __start___param,
				  -1, -1, &unknown_bootoption);
	if (!IS_ERR_OR_NULL(after_dashes))
		parse_args("Setting init args", after_dashes, NULL, 0, -1, -1,
			   set_init_arg);

	jump_label_init();

	/*
	 * These use large bootmem allocations and must precede
	 * kmem_cache_init()
	 */
	setup_log_buf(0);
	pidhash_init();
	vfs_caches_init_early();
	sort_main_extable();
	trap_init();
	mm_init();

	/*
	 * Set up the scheduler prior starting any interrupts (such as the
	 * timer interrupt). Full topology setup happens at smp_init()
	 * time - but meanwhile we still have a functioning scheduler.
	 */
	sched_init();
	/*
	 * Disable preemption - early bootup scheduling is extremely
	 * fragile until we cpu_idle() for the first time.
	 */
	preempt_disable();
	if (WARN(!irqs_disabled(),
		 "Interrupts were enabled *very* early, fixing it\n"))
		local_irq_disable();
	idr_init_cache();
	rcu_init();

	/* trace_printk() and trace points may be used after this */
	trace_init();

	context_tracking_init();
	radix_tree_init();
	/* init some links before init_ISA_irqs() */
	early_irq_init();
	init_IRQ();
	tick_init();
	rcu_init_nohz();
	init_timers();
	hrtimers_init();
	softirq_init();
	timekeeping_init();
	time_init();
	sched_clock_postinit();
	perf_event_init();
	profile_init();
	call_function_init();
	WARN(!irqs_disabled(), "Interrupts were enabled early\n");
	early_boot_irqs_disabled = false;
	local_irq_enable();

	kmem_cache_init_late();

	/*
	 * HACK ALERT! This is early. We're enabling the console before
	 * we've done PCI setups etc, and console_init() must be aware of
	 * this. But we do want output early, in case something goes wrong.
	 */
	console_init();
	if (panic_later)
		panic("Too many boot %s vars at `%s'", panic_later,
		      panic_param);

	lockdep_info();

	/*
	 * Need to run this when irqs are enabled, because it wants
	 * to self-test [hard/soft]-irqs on/off lock inversion bugs
	 * too:
	 */
	locking_selftest();

#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start && !initrd_below_start_ok &&
	    page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
		pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n",
		    page_to_pfn(virt_to_page((void *)initrd_start)),
		    min_low_pfn);
		initrd_start = 0;
	}
#endif
	page_ext_init();
	debug_objects_mem_init();
	kmemleak_init();
	setup_per_cpu_pageset();
	numa_policy_init();
	if (late_time_init)
		late_time_init();
	sched_clock_init();
	calibrate_delay();
	pidmap_init();
	anon_vma_init();
	acpi_early_init();
#ifdef CONFIG_X86
	if (efi_enabled(EFI_RUNTIME_SERVICES))
		efi_enter_virtual_mode();
#endif
#ifdef CONFIG_X86_ESPFIX64
	/* Should be run before the first non-init thread is created */
	init_espfix_bsp();
#endif
	thread_info_cache_init();
	cred_init();
	fork_init();
	proc_caches_init();
	buffer_init();
	key_init();
	security_init();
	dbg_late_init();
	vfs_caches_init(totalram_pages);
	signals_init();
	/* rootfs populating might need page-writeback */
	page_writeback_init();
	proc_root_init();
	nsfs_init();
	cpuset_init();
	cgroup_init();
	taskstats_init_early();
	delayacct_init();

	check_bugs();

	acpi_subsystem_init();
	sfi_init_late();

	if (efi_enabled(EFI_RUNTIME_SERVICES)) {
		efi_late_init();
		efi_free_boot_services();
	}

	ftrace_init();

	/* Do the rest non-__init'ed, we're now alive */
	rest_init();
}

2.3 初始化init进程

在start_kernel最后,调用了rest_init函数,rest_init函数也定义在文件 init/main.c中,这个不长:

static noinline void __init_refok rest_init(void)
{
	int pid;

	rcu_scheduler_starting();
	smpboot_thread_init();
	/*
	 * We need to spawn init first so that it obtains pid 1, however
	 * the init task will end up wanting to create kthreads, which, if
	 * we schedule it before we create kthreadd, will OOPS.
	 */
	kernel_thread(kernel_init, NULL, CLONE_FS);
	numa_default_policy();
	pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
	rcu_read_lock();
	kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
	rcu_read_unlock();
	complete(&kthreadd_done);

	/*
	 * The boot idle thread must execute schedule()
	 * at least once to get things moving:
	 */
	init_idle_bootup_task(current);
	schedule_preempt_disabled();
	/* Call into cpu_idle with preempt disabled */
	cpu_startup_entry(CPUHP_ONLINE);
}

它的流程是:

  • 调用 rcu_scheduler_starting,启动 RCU锁调度器
  • 调用 kernel_thread 创建 kernel_init进程,将kernel由内核态转到用户态
  • 调用 kernel_thread 创建 kthreadd内核进程,此内核进程的 PID为 2。 kthreadd进程负责所有内核进程的调度和管理。
  • 最后调用 cpu_startup_entry 进入 idle进程,idle线程说白了,和待机很像,让cpu一直干愣着,有任务它就把cpu交给其它进程。
    kernel_init函数用来管理init进程,代码如下:
static int __ref kernel_init(void *unused)
{
	int ret;

	kernel_init_freeable();
	/* need to finish all async __init code before freeing the memory */
	async_synchronize_full();
	free_initmem();
	mark_rodata_ro();
	system_state = SYSTEM_RUNNING;
	numa_default_policy();

	flush_delayed_fput();

	if (ramdisk_execute_command) {
		ret = run_init_process(ramdisk_execute_command);
		if (!ret)
			return 0;
		pr_err("Failed to execute %s (error %d)\n",
		       ramdisk_execute_command, ret);
	}

	/*
	 * We try each of these until one succeeds.
	 *
	 * The Bourne shell can be used instead of init if we are
	 * trying to recover a really broken machine.
	 */
	if (execute_command) {
		ret = run_init_process(execute_command);
		if (!ret)
			return 0;
		panic("Requested init %s failed (error %d).",
		      execute_command, ret);
	}
	if (!try_to_run_init_process("/sbin/init") ||
	    !try_to_run_init_process("/etc/init") ||
	    !try_to_run_init_process("/bin/init") ||
	    !try_to_run_init_process("/bin/sh"))
		return 0;

	panic("No working init found.  Try passing init= option to kernel. "
	      "See Linux Documentation/init.txt for guidance.");
}
  • 调用 kernel_init_freeable 函数用于完成 init进程的一些其他初始化工作,下面会再说;
  • 调用 async_synchronize_full 函数,等待List async_running与async_pending都清空后返回,用来加速Linux启动;
  • 调用 free_initmem 函数,释放Linux Kernel有关内存,用于满足多媒体、中断等高需求;
  • 调用 mark_rodata_ro 函数,标记内核数据只读;
  • 调用 numa_default_policy 函数,恢复当前进程的内存策略为默认状态;
  • 如果ramdisk_execute_command、execute_command为真,调用 run_init_process 函数 初始化用户进程,否则通过其它尝试初始化用户层。
    最后,看一下kernel_init_freeable()函数:
static noinline void __init kernel_init_freeable(void)
{
	/*
	 * Wait until kthreadd is all set-up.
	 */
	wait_for_completion(&kthreadd_done);

	/* Now the scheduler is fully set up and can do blocking allocations */
	gfp_allowed_mask = __GFP_BITS_MASK;

	/*
	 * init can allocate pages on any node
	 */
	set_mems_allowed(node_states[N_MEMORY]);
	/*
	 * init can run on any cpu.
	 */
	set_cpus_allowed_ptr(current, cpu_all_mask);

	cad_pid = task_pid(current);

	smp_prepare_cpus(setup_max_cpus);

	do_pre_smp_initcalls();
	lockup_detector_init();

	smp_init();
	sched_init_smp();

	do_basic_setup();

	/* Open the /dev/console on the rootfs, this should never fail */
	if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
		pr_err("Warning: unable to open an initial console.\n");

	(void) sys_dup(0);
	(void) sys_dup(0);
	/*
	 * check if there is an early userspace init.  If yes, let it do all
	 * the work
	 */

	if (!ramdisk_execute_command)
		ramdisk_execute_command = "/init";

	if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
		ramdisk_execute_command = NULL;
		prepare_namespace();
	}

	/*
	 * Ok, we have completed the initial bootup, and
	 * we're essentially up and running. Get rid of the
	 * initmem segments and start the user-mode stuff..
	 *
	 * rootfs is available now, try loading the public keys
	 * and default modules
	 */

	integrity_load_keys();
	load_default_modules();
}
  • 调用 wait_for_completion 函数,等待 kthreadd_done 完成;
  • 调用 set_mems_allowed 函数,初始化可在任何node分配到内存页;
  • 调用 set_cpus_allowed_ptr 函数,设置cpu_bit_mask,限定task只在特定处理器上运行,使init进程能够在任意的cpu上运行;
  • 调用 smp_prepare_cpus 函数,设定在编译核心时支援的最大CPU数量;
  • 调用 do_pre_smp_initcalls 函数,遍历Symbol中部分函数,并调用do_one_initcall(fn)依次执行;
  • 调用 do_basic_setup函数,完成 Linux下设备驱动初始化工作以及Linux下驱动模型子系统的初始化;
  • 调用函数 prepare_namespace 函数,挂载根文件系统。

三、kernel移植

​ 在没有大的修改下,kernel移植只需要移植defconfig配置文件以及设备树文件即可,它们分别在arch/arm/configs、arch/arm/boot/dts下。复制完后,再在arch/arm/boot/dts的Makefile中添加设备树,复制的哪个就添加到哪个下面就行。
​ 移植脚本,注移植的NXP的imx6ullevk:

#!/bin/bash

board=Xport_Alientek
BOARD=XPORT_ALIENTEK

# Adding a compilation script
touch ${board}_building.sh
chmod 777 ${board}_building.sh
echo '#!/bin/bash' > ${board}_building.sh
echo '' >> ${board}_building.sh
echo "make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- distclean" >> ${board}_building.sh
echo "make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- imx_${board}_emmc_defconfig" >> ${board}_building.sh
echo "make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig" >> ${board}_building.sh
echo "make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- all -j8" >> ${board}_building.sh

cd arch/arm/configs
cp imx_alientek_emmc_defconfig imx_${board}_emmc_defconfig

cd ../../../arch/arm/boot/dts
cp imx6ull-alientek-emmc.dts imx6ull-${board}-emmc.dts

getline()
{
	cat -n Makefile|grep "imx6ull-${board}-emmc.dtb "|awk '{print $1}'
}
if [ `getline` > 0 ]
then
	echo The development board : $board already exists
else
	declare -i nline
	getline()
	{
		cat -n Makefile|grep "CONFIG_SOC_IMX6ULL) += "|awk '{print $1}'
	}
	getlinenum()
	{
		awk "BEGIN{a=`getline`;b="1";c=(a+b);print c}";
	}
	nline=`getlinenum`-1
	sed -i "${nline}a\	imx6ull-${board}-emmc.dtb "'\\' Makefile
	echo The new linux-kernel : $board is added
fi

你可能感兴趣的:(Linux,学习,#,Linux,内核,linux,arm开发,kernel)