Last in firsr Out(LIFO)
(后进栈的元素先出栈);"创&销"
InitStack(&S)
初始化栈:构造一个空栈S,分配内存空间;DestroyStack(&S)
销毁栈:销毁并释放栈S所占用的内存空间;"增&删"
Push(&S, x)
进栈:若栈S未满,则将x加入使其成为新栈顶;Pop(&S, &x)
出栈:若栈S非空,则弹出(删除)栈顶元素,并用x返回;"查&其他"
GetTop(S, &x)
读取栈顶元素:若栈S非空,则用x返回栈顶元素;(栈的使用场景大多只访问栈顶元素);StackEmpty(S)
判空: 判断一个栈S是否为空,若S为空,则返回true,
否则返回false
;例:进栈顺序为:a -> b -> c -> d -> e
合法的出栈顺序:e d c b a / b e d c a (出栈和进栈交替进行) / …
结论
#define MaxSize 10 //定义栈中元素的最大个数
typedef struct{
ElemType data[MaxSize]; //静态数组存放栈中元素
int top; //栈顶元素
}SqStack;
void testStack(){
SqStack S; //声明一个顺序栈(分配空间)
//连续的存储空间大小为 MaxSize*sizeof(ElemType)
}
#define MaxSize 10 //定义栈中元素的最大个数
typedef struct{
ElemType data[MaxSize]; //静态数组存放栈中元素
int top; //栈顶元素
}SqStack;
//初始化栈
void InitStack(SqStack &S){
S.top = -1; //初始化栈顶指针
}
//判栈空
bool StackEmpty(SqStack S){
if(S.top == -1) //栈空
return true;
else //栈不空
return false;
}
//新元素进栈
bool Push(SqStack &S, ElemType x){
if(S.top == MaxSize - 1) //栈满
return false;
S.top = S.top + 1; //指针先加1
S.data[S.top] = x; //新元素入栈
/*等价于
S.data[++S.top] = x;
*/
return true;
}
//出栈
bool Pop(SqStack &x, ElemType &x){
if(S.top == -1) //栈空,报错
return false;
x = S.data[S.top]; //栈顶元素先出栈
S.top = S.top - 1; //栈顶指针减1
return true;
/*
x = S.data[S.top--];
*/
//只是逻辑上的删除,数据依然残留在内存里
}
//读栈顶元素
bool GetTop(SqStack S, ElemType &x){
if(S.top == -1)
return false;
x = S.data[S.top]; //x记录栈顶元素
return true;
}
void testStack(){
SqStack S; //声明一个顺序栈(分配空间)
InitStack(S);
//...
}
另一种方式: 也可以初始化时定义 S.top = 0 :即栈顶指针(top)指向栈顶元素的下一个位置;
顺序栈的缺点
#define MaxSize 10 //定义栈中元素的最大个数
typedef struct{
ElemType data[MaxSize]; //静态数组存放栈中元素
int top0; //0号栈栈顶指针
int top1; //1号栈栈顶指针
}ShStack;
//初始化栈
void InitSqStack(ShStack &S){
S.top0 = -1; //初始化栈顶指针
S.top1 = MaxSize;
}
void testStack(){
SqStack S; //声明一个顺序栈(分配空间)
//用变量声明栈时分配内存,函数运行结后系统自动回收
}
特点
因此,链栈实际上就是一个只能采用头插法插入或删除数据的链表;
typedef struct Linknode{
ElemType data; //数据域
struct Linknode *next; //指针域
}*LiStack; //栈类型的定义
带有头结点的链栈基本操作
#include
struct Linknode{
int data; //数据域
Linknode *next; //指针域
}Linknode,*LiStack;
typedef Linknode *Node; //结点结构体指针变量
typedef Node List; //结点结构体头指针变量
//1. 初始化
void InitStack(LiStack &L){ //L为头指针
L = new Linknode;
L->next = NULL;
}
//2.判栈空
bool isEmpty(LiStack &L){
if(L->next == NULL){
return true;
}
else
return false;
}
//3. 进栈(:链栈基本上不会出现栈满的情况)
void pushStack(LiStack &L, int x){
Linknode s; //创建存储新元素的结点
s = new Linknode;
s->data = x;
//头插法
s->next = L->next;
L->next = s;
}
//4.出栈
bool popStack(LiStack &L, int &x){
Linknode s;
if(L->next == NULL) //栈空不能出栈
return false;
s = L->next;
x = s->data;
L->next = L->next->next;
delete(s);
return true;
}
不带头结点的链栈基本操作
#include
struct Linknode{
int data; //数据域
Linknode *next; //指针域
}Linknode,*LiStack;
typedef Linknode *Node; //结点结构体指针变量
typedef Node List; //结点结构体头指针变量
//1.初始化
void initStack(LiStack &L){
L=NULL;
}
//2.判栈空
bool isEmpty(LiStack &L){
if(L == NULL)
return true;
else
teturn false;
}
//3.进栈
void pushStack(LiStack &L, int x){
Linknode s; //创建存储新元素的结点
s = new Linknode;
s->next = L;
L = s;
}
//4.出栈
bool popStack(LiStack &L, int &x){
Linknode s;
if(L = NULL) //栈空不出栈
return false;
s = L;
x = s->data;
L = L->next;
delete(s);
return true;
}
"创&销"
InitQueue(&Q)
: 初始化队列,构造一个空列表QDestroyQueue(&Q)
: 销毁队列,并释放队列Q所占用的内存空间EnQueue(&Q, x)
: 入队,若队列Q未满,将x加入,使之成为新的队尾DeQueue(&Q, &x)
: 出队,若队列Q非空,删除队头元素,并用x返回"查&其他"
GetHead(Q,&x)
: 读队头元素,若队列Q非空,则将队头元素赋值给xQueueEmpty(Q)
: 判队列空,若队列Q为空,则返回true队头指针:指向队头元素;
队尾指针:指向队尾元素的后一个位置(下一个应该插入的位置)
//队列的顺序存储类型
# define MaxSize 10; //定义队列中元素的最大个数
typedef struct{
ElemType data[MaxSize]; //用静态数组存放队列元素
//连续的存储空间,大小为——MaxSize*sizeof(ElemType)
int front, rear; //队头指针和队尾指针
}SqQueue;
//初始化队列
void InitQueue(SqQueue &Q){
//初始化时,队头、队尾指针指向0
Q.rear = Q.front = 0;
}
void test{
SqQueue Q; //声明一个队列
InitQueue(Q);
//...
}
// 判空
bool QueueEmpty(SqQueue 0){
if(Q.rear == Q.front) //判空条件后
return true;
else
return false;
}
A: 不能!会有假溢出, 所以需要用 模运算 将存储空间 {0,1,2,…,MaxSize} 在逻辑上变成“环状”——循环队列!
a%b == a除以b的余数
初始:Q.front = Q.rear = 0;
队首指针进1:Q.front = (Q.front + 1) % MaxSize
队尾指针进1:Q.rear = (Q.rear + 1) % MaxSize —— 队尾指针后移,当移到最后一个后,下次移动会到第一个位置
队列长度:(Q.rear + MaxSize - Q.front) % MaxSize
Q: 能否用 Q.rear == Q.front
作为队列满的条件?
A: 不能!这已经作为队列空的判断条件了;
队尾指针的再下一个位置就是队头,即 (Q.rear+1)%MaxSize == Q.front
bool EnQueue(SqQueue &Q, ElemType x){
if((Q.rear+1)%MaxSize == Q.front) //队满
return false;
Q.data[Q.rear] = x; //将x插入队尾
Q.rear = (Q.rear + 1) % MaxSize; //队尾指针加1取模
return true;
}
//出队,删除一个队头元素,用x返回
bool DeQueue(SqQueue &Q, ElemType &x){
if(Q.rear == Q.front) //队空报错
return false;
x = Q.data[Q.front];
Q.front = (Q.front + 1) % MaxSize; //队头指针后移动
return true;
}
bool GetHead(SqQueue &Q, ElemType &x){
if(Q.rear == Q.front) //队空报错
return false;
x = Q.data[Q.front];
return true;
}
定义一个变量 size
用于记录队列此时记录了几个数据元素,初始化 size = 0
,进队成功 size++
,出队成功size--
,根据size的值判断队满与队空
队满条件:size == MaxSize
队空条件:size == 0
# define MaxSize 10;
typedef struct{
ElemType data[MaxSize];
int front, rear;
int size; //队列当前长度
}SqQueue;
//初始化队列
void InitQueue(SqQueue &Q){
Q.rear = Q.front = 0;
size = 0;
}
定义一个变量 tag
,tag = 0
--最近进行的是删除操作;tag = 1
--最近进行的是插入操作;
每次删除操作成功时,都令tag = 0
;只有删除操作,才可能导致队空;
每次插入操作成功时,都令tag = 1
;只有插入操作,才可能导致队满;
队满条件:Q.front == Q.rear && tag == 1
队空条件:Q.front == Q.rear && tag == 0
# define MaxSize 10;
typedef struct{
ElemType data[MaxSize];
int front, rear;
int tag; //最近进行的是删除or插入
}SqQueue;
(Q.rear + 1) % MaxSize == Q.front
判满
入队操作
Q.rear = (Q.rear + 1) % MaxSize; //后移一位
Q.data[Q.rear] = x;
typedef struct LinkNode{ //链式队列结点
ElemType data;
struct LinkNode *next;
}
typedef struct{ //链式队列
LinkNode *front, *rear; //队列的队头和队尾指针
}LinkQueue;
void InitQueue(LinkQueue &Q){
//初始化时,front、rear都指向头结点
Q.front = Q.rear = (LinkNode*)malloc(sizeof(LinkNode));
Q.front -> next = NULL;
}
//判断队列是否为空
bool IsEmpty(LinkQueue Q){
if(Q.front == Q.rear) //也可用 Q.front -> next == NULL
return true;
else
return false;
}
//新元素入队 (表尾进行)
void EnQueue(LinkQueue &Q, ElemType x){
LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode)); //申请一个新结点
s->data = x;
s->next = NULL; //s作为最后一个结点,指针域指向NULL
Q.rear->next = s; //新结点插入到当前的rear之后
Q.rear = s; //表尾指针指向新的表尾
}
//队头元素出队
bool DeQueue(LinkQueue &Q, ElemType &x){
if(Q.front == Q.rear)
return false; //空队
LinkNode *p = Q.front->next; //p指针指向即将删除的结点 (头结点所指向的结点)
x = p->data;
Q.front->next = p->next; //修改头结点的next指针
if(Q.rear == p) //此次是最后一个结点出队
Q.rear = Q.front; //修改rear指针
free(p); //释放结点空间
return true;
}
链式存储:一般不会队满,除非内存不足
int length
记录链式队列长度void InitQueue(LinkQueue &Q){
//初始化时,front、rear都指向NULL
Q.front = NULL;
Q.rear = NULL;
}
//判断队列是否为空
bool IsEmpty(LinkQueue Q){
if(Q.front == NULL) //也可以用 Q.rear == NULL
return true;
else
return false;
}
//新元素入队 (表尾进行)
void EnQueue(LinkQueue &Q, ElemType x){
LinkNode *s = (LinkNode *)malloc(sizeof(LinkNode)); //申请一个新结点
s->data = x;
s->next = NULL;
//第一个元素入队时需要特别处理
if(Q.front = NULL){ //在空队列中插入第一个元素
Q.front = s; //修改队头队尾指针
Q.rear = s;
}else{
Q.rear->next = s; //新结点插入到rear结点之后
Q.rear = s; //修改rear指针指向新的表尾结点
}
}
例: 数据元素输入序列为 1,2,3,4
,判断 4!=24 个输出序列的合法性
PS: 栈中合法的序列,双端队列中一定也合法
| 栈 | 输入受限的双端队列 | 验证在栈中不合法的序列
–|--
|14个合法(卡特兰数) | 验证在栈中不合法的序列 | 验证在栈中不合法的序列 |
|啊 | 只有 4213 和 4231 不合法 | 只有 4132 和 4231 不合法 |
栈 | 输入受限的双端队列 | 验证在栈中不合法的序列 |
---|---|---|
14个合法(卡特兰数) | 验证在栈中不合法的序列 | 验证在栈中不合法的序列 |
只有 4213 和 4231 不合法 | 验证在栈中不合法的序列 |
用栈实现括号匹配
((()))
最后出现的左括号最先被匹配 (栈的特性—LIFO);匹配失败情况:
#define MaxSize 10
typedef struct{
char data[MaxSize];
int top;
} SqStack;
//初始化栈
InitStack(SqStack &S)
//判断栈是否为空
bool StackEmpty(SqStack &S)
//新元素入栈
bool Push(SqStack &S, char x)
//栈顶元素出栈,用x返回
bool Pop(SqStack &S, char &x)
bool bracketCheck(char str[], int length){
SqStack S; //声明
InitStack(S); //初始化栈
for(int i=0; i<length; i++){
if(str[i] == '(' || str[i] == '[' || str[i] == '{'){
Push(S, str[i]); //扫描到左括号,入栈
}else{
if(StackEmpty(S)) //扫描到右括号,且当前栈空
return false; //匹配失败
char topElem; //存储栈顶元素
Pop(S, topElem); //栈顶元素出栈
if(str[i] == ')' && topElem != '(' )
return false;
if(str[i] == ']' && topElem != '[' )
return false;
if(str[i] == '}' && topElem != '{' )
return false;
}
}
StackEmpty(S); //栈空说明匹配成功
}
运算符在两个操作数中间:
① a + b
② a + b - c
③ a + b - c*d
④ ((15 ÷ (7-(1+1)))×3)-(2+(1+1))
⑤ A + B × (C - D) - E ÷ F
① a b +
② ab+ c - / a bc- +
③ ab+ cd* -
④ 15 7 1 1 + - ÷ 3 × 2 1 1 + + -
⑤ A B C D - × + E F ÷ - (机算结果)
A B C D - × E F ÷ - + (不选择)
中缀表达式转后缀表达式-手算
步骤1: 确定中缀表达式中各个运算符的运算顺序
步骤2: 选择下一个运算符,按照[左操作数 右操作数 运算符]的方式组合成一个新的操作数
步骤3: 如果还有运算符没被处理,继续步骤2
“左优先”原则: 只要左边的运算符能先计算,就优先算左边的 (保证运算顺序唯一);
中缀:A + B - C * D / E + F
① ④ ② ③ ⑤
后缀:A B + C D * E / - F +
重点:中缀表达式转后缀表达式-机算
初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。从左到右处理各个元素,直到末尾。可能遇到三种情况:
遇到操作数: 直接加入后缀表达式。
遇到界限符: 遇到 ‘(’ 直接入栈; 遇到 ‘)’ 则依次弹出栈内运算符并加入后缀表达式,直到弹出 ‘(’ 为止。注意: ‘(’ 不加入后缀表达式。
遇到运算符: 依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式,若碰到 ‘(’ 或栈空则停止。之后再把当前运算符入栈。
按上述方法处理完所有字符后,将栈中剩余运算符依次弹出,并加入后缀表达式。
注意: 两个操作数的左右顺序
重点:后缀表达式的计算—机算
用栈实现后缀表达式的计算(栈用来存放当前暂时不能确定运算次序的操作数)
步骤1: 从左往后扫描下一个元素,直到处理完所有元素;
步骤2: 若扫描到操作数,则压入栈,并回到步骤1;否则执行步骤3;
步骤3: 若扫描到运算符,则弹出两个栈顶元素,执行相应的运算,运算结果压回栈顶,回到步骤1;
注意: 先出栈的是“右操作数”