相关资料
安装依赖
pip install prometheus-client
基于flask服务代码示例
随机返回一些数值
# -*- coding: utf-8 -*-
"""
@File : demo.py
@Date : 2023-06-30
"""
import random
import prometheus_client
from flask import Flask, Response
from prometheus_client import Gauge
from prometheus_client.core import CollectorRegistry
app = Flask(__name__)
@app.get('/metrics')
def metrics():
"""
prometheus metrics接口
:return:
"""
registry = CollectorRegistry(auto_describe=False)
gauge = Gauge(
name="flask_app",
documentation="this is a flask app data",
labelnames=["label"],
registry=registry)
rows = [
{
'label': '张飞',
'value': random.randint(10, 20)
},
{
'label': '赵云',
'value': random.randint(10, 20)
},
{
'label': '刘备',
'value': random.randint(10, 20)
}
]
for row in rows:
gauge.labels(row['label']).set(row['value'])
return Response(prometheus_client.generate_latest(registry), mimetype='text/plain')
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)
From metrics to insight Power your metrics and alerting with the leading open-source monitoring solution.
译文:从度量到洞察力,通过领先的开源监控解决方案。
配置文件 prometheus.yml
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=` to any timeseries scraped from this config.
- job_name: "prometheus"
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ["localhost:9090"]
- targets: ["192.168.0.101:8000"]
注意:如果是docker方式启动,ip地址需要配置局域网ip,不能使用127.0.0.1
使用docker方式启动 prometheus
docker run \
-p 9090:9090 \
-v $(pwd)/prometheus.yml:/etc/prometheus/prometheus.yml \
--name prometheus \
prom/prometheus
访问地址:http://localhost:9090/
The open and composable observability and data visualization platform. Visualize metrics, logs, and traces from multiple sources like Prometheus, Loki, Elasticsearch, InfluxDB, Postgres and many more.
译文:开放、可组合的可观测性和数据可视化平台。可视化来自Prometheus、Loki、Elasticsearch、InfluxDB、Postgres等多个来源的指标、日志和跟踪。
使用docker方式启动 grafana
docker run -d \
-p 3000:3000 \
--name grafana \
grafana/grafana
访问地址:http://localhost:3000/
参考文章