class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
def dfs(i,j,prev):
if i<0 or i>=m or j<0 or j>=n or matrix[i][j]<=prev:
return 0
#print(i,j)
tmp = 0
tmp = max(dfs(i+1,j,matrix[i][j]),dfs(i,j+1,matrix[i][j]),dfs(i-1,j,matrix[i][j]),dfs(i,j-1,matrix[i][j])) + 1
return tmp
if not matrix or not matrix[0]:
return 0
m,n = len(matrix),len(matrix[0])
#dfs(0,1,float('-inf'))
ans = 0
for i in range(m):
for j in range(n):
print((i,j),dfs(i,j,float('-inf')))
ans = max(dfs(i,j,float('-inf')),ans)
return ans
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
def dfs(i,j,prev):
if i<0 or i>=m or j<0 or j>=n or matrix[i][j]<=prev:
return 0
if memo[i][j] != float('-inf'):
return memo[i][j]
memo[i][j] = max(dfs(i+1,j,matrix[i][j]),dfs(i,j+1,matrix[i][j]),dfs(i-1,j,matrix[i][j]),dfs(i,j-1,matrix[i][j])) + 1
return memo[i][j]
if not matrix or not matrix[0]:
return 0
m,n = len(matrix),len(matrix[0])
ans = 0
memo = [[float('-inf')]*n for _ in range(m)]
for i in range(m):
for j in range(n):
ans = max(dfs(i,j,float('-inf')),ans)
return ans
C++版本:
class Solution {
public:
int longestIncreasingPath(vector<vector<int>>& matrix) {
if (matrix.empty() || matrix[0].empty()) return 0;
int ans = 0;
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> memo(m,vector<int>(n,-INT_MAX));
for (int i=0;i<matrix.size();i++){
for (int j=0;j<matrix[0].size();j++){
ans = max(ans,dfs(i,j,-INT_MAX,memo,matrix));
}
}
return ans;
}
int dfs(int i, int j, int prev, vector<vector<int>>& memo, vector<vector<int>>& matrix){
if (i<0 || i>=matrix.size() || j<0 || j>=matrix[0].size() || matrix[i][j]<=prev) {
return 0;
}
if (memo[i][j] != -INT_MAX) return memo[i][j];
memo[i][j] = max(dfs(i+1,j,matrix[i][j],memo,matrix)+1,memo[i][j]);
memo[i][j] = max(dfs(i,j+1,matrix[i][j],memo,matrix)+1,memo[i][j]);
memo[i][j] = max(dfs(i-1,j,matrix[i][j],memo,matrix)+1,memo[i][j]);
memo[i][j] = max(dfs(i,j-1,matrix[i][j],memo,matrix)+1,memo[i][j]);
return memo[i][j];
}
};
分三步:
宏观上理解这种解法:拓扑排序是为了保证我们dp的子问题已经被计算。举个例子
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
# construct graph
graph = collections.defaultdict(list)
m,n = len(matrix),len(matrix[0])
indegrees = [[0]*n for _ in range(m)]
dirs = [[-1,0],[1,0],[0,1],[0,-1]]
for i in range(m):
for j in range(n):
for d in dirs:
x = i+d[0]
y = j+d[1]
if 0<=x<m and 0<=y<n and matrix[i][j]<matrix[x][y]:
graph[(x,y)].append((i,j))
indegrees[i][j] += 1
# topology sort
q = collections.deque()
for i in range(m):
for j in range(n):
if indegrees[i][j] == 0:
q.append((i,j))
order = []
while q:
i,j = q.popleft()
order.append((i,j))
for x,y in graph[(i,j)]:
indegrees[x][y] -= 1
if indegrees[x][y] == 0:
q.append((x,y))
# dynamic programming according to topology order
dp = [[1]*n for _ in range(m)]
for i in range(m*n-1,-1,-1):
x,y = order[i][0],order[i][1]
for x1,y1 in graph[(x,y)]:
dp[x][y] = max(dp[x][y],(dp[x1][y1]+1))
ans = 0
for row in dp:
for num in row:
ans = max(ans,num)
return ans
其实用拓扑排序并不需要后面的dp,这是一个Longest path in a DAG的问题,参考这边:https://www.geeksforgeeks.org/find-longest-path-directed-acyclic-graph/
class Solution {
public:
int longestIncreasingPath(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> indegrees(m,vector<int>(n,0));
vector<pair<int,int>> dirs{{0,1},{0,-1},{1,0},{-1,0}};
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
for(auto& d : dirs){
int x = i+d.first;
int y = j+d.second;
if(x < 0 || y < 0 || x >= m || y >= n) continue;
if(matrix[i][j] > matrix[x][y]){
indegrees[i][j]++;
}
}
}
}
queue<pair<int,int>> q;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(indegrees[i][j] == 0) q.push(make_pair(i,j));
}
}
int lenth = 0;
while(!q.empty()){
int size = q.size();
for(int i=0;i<size;i++){
auto curr = q.front();
q.pop();
for(auto& d : dirs){
int x = curr.first + d.first;
int y = curr.second + d.second;
if(x < 0 || y < 0 || x >= m || y >= n) continue;
if(matrix[x][y] > matrix[curr.first][curr.second]){
indegrees[x][y]--;
if(indegrees[x][y] == 0) q.push(make_pair(x,y));
}
}
}
lenth++;
}
return lenth;
}
};