- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- Python 训练营打卡 Day 20-奇异值SVD分解
帮关下月亮
python训练营python算法开发语言
一.奇异值分解(SVD)的输入和输出输入:一个任意的矩阵A,尺寸为m×n(其中m是行数,n是列数,可以是矩形矩阵,不必是方阵)奇异值分解(SVD)得到的三个矩阵U、Σ和V^T各有其特定的意义和用途,下面我简要说明它们的作用:U(奇异值向量矩阵):是一个m×m的正交矩阵,列向量是矩阵AA^T的特征向量作用:表示原始矩阵A在行空间(样本空间)中的主方向或基向量。简单来说,U$的列向量描述了数据在行维度
- 矩阵分解相关知识点总结(四)
嵙杰
数学基础矩阵分解特征值SVD分解
文章目录四、矩阵的满秩分解五、矩阵的奇异值分解书接上上文矩阵分解相关知识点总结(二)四、矩阵的满秩分解 设A∈Crm×n(r>0)A\inC_r^{m\timesn}(r>0)A∈Crm×n(r>0),存在矩阵F∈Crm×rF\inC_r^{m\timesr}F∈Crm×r和G∈Crr×nG\inC_r^{r\timesn}G∈Crr×n,使得A=FG(7)\color{#F00}A=FG\ta
- 矩阵的奇异值(Singular Values)
幼儿园大哥~
扩展知识矩阵算法线性代数
矩阵的奇异值(SingularValues)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释:奇异值分解(SVD)奇异值分解是矩阵分解的一种方法,它将任意一个实数或复数矩阵分解为三个特定矩阵的乘积。具体来说,对于一个m×nm\timesnm×n的矩阵M\mathbf{M}M,其奇异值分解表示为:M=U
- 矩阵特征值和奇异值之间的关系
hxyzs
矩阵机器学习线性代数
矩阵的特征值和奇异值是线性代数中重要的概念,它们之间存在一定的关系。对于一个方阵,其特征值是该矩阵在空间中的特殊向量方向上的缩放因子。特征值可以通过解矩阵的特征值问题得到,即找到满足方程Ax=λx的非零向量x和标量λ。而对于一个非方阵的矩阵,它的奇异值则是矩阵的秩和特征向量的相对缩放因子。奇异值分解(SVD)可以将矩阵分解为三个部分:U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上
- 深入详解矩阵分解(SVD在推荐系统中的应用)
猿享天开
人工智能数学基础专讲矩阵线性代数
深入详解矩阵分解(SVD在推荐系统中的应用)矩阵分解是数据科学、机器学习和人工智能中的核心技术之一,尤其在推荐系统中展现出强大的应用潜力。本文将从基础数学概念开始,逐步深入到奇异值分解(SVD)的理论、计算过程、在推荐系统中的具体应用,并扩展到矩阵分解在人工智能其他领域的应用。通过详细的解释和具体的实例,帮助初学者全面掌握和理解矩阵分解的原理和应用。一、矩阵基础知识1.1什么是矩阵?矩阵是一个按照
- 深入详解线性代数基础知识:理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA)在人工智能中的应用
猿享天开
人工智能数学基础专讲线性代数人工智能矩阵特征向量
深入详解线性代数基础知识在人工智能中的应用线性代数是人工智能,尤其是机器学习和深度学习领域的基石。深入理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA),对于数据降维、特征提取和模型优化至关重要。本文将详细探讨这些线性代数的核心概念及其在人工智能中的应用,并辅以示例代码以助理解。1.矩阵与向量运算线性代数中的矩阵与向量运算是理解高维数据处理和模型训练的基
- 【图像处理基石】如何入门AI计算机视觉?
AndrewHZ
图像处理基石人工智能图像处理计算机视觉深度学习AIPyTorch
入门AI计算机视觉需要从基础理论、工具方法和实战项目三个维度逐步推进,以下是系统化的学习路径和建议:一、夯实基础:核心知识储备1.数学基础(必备)线性代数:矩阵运算、特征值分解、奇异值分解(SVD)——理解神经网络中的线性变换。概率论与统计:概率分布、贝叶斯定理、假设检验——支撑模型训练中的不确定性分析。微积分:导数、梯度、链式法则——深度学习优化(如反向传播)的核心。推荐资源:教材:《线性代数及
- 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理
AI算力那些事儿
技术剖析线性代数人工智能算法
目录一、特征值分解的数学本质1、基本定义与核心方程2、几何解释与线性变换3、可对角化条件与分解形式二、特征值分解的计算方法1、特征多项式与代数解法2、数值计算方法3、计算实例与验证三、特征值分解在AI中的关键应用1、主成分分析(PCA)与数据降维2、图分析与网络科学3、矩阵分析与优化问题4、图像处理与信号分析四、特征值分解的扩展与相关技术1、奇异值分解(SVD)的关联2、广义特征值问题3、现代算法
- day 20
lcccyyy1
60天计划python
利用SVD奇异值分解进行降维奇异值分解(SVD)将原始矩阵A分解为A=UΣVᵀ,可完全重构A且无信息损失。实际应用中,常筛选排序靠前的奇异值及对应向量实现降维或数据压缩:1.排序特性:Σ矩阵对角线上奇异值降序排列,大值代表主要信息,小值代表次要信息或噪声,其大小反映对A的贡献程度。2.筛选规则:选前k个奇异值(k小于矩阵秩),常见规则有固定数量、累计方差贡献率达阈值、按奇异值下降“拐点”截断。3.
- SVD奇异值分解
zx43
python训练营打卡内容机器学习人工智能python笔记
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 2024 AI 人工智能完整学习路线表
AI天才研究院
人工智能学习
十六大阶段概述阶段阶段名称实战项目收益第一阶段python基础与科学计算模块√泰坦尼克号数据分析案例√可视化剖析逻辑回归损失函数案例算法先行,技术随后。学习人工智能领域基础知识熟练掌握,打好坚实的内功基础。第二阶段AI数学知识√梯度下降和牛顿法推导√SVD奇异值分解应用第三阶段线性回归算法√代码实现梯度下降求解多元线性回归√保险花销预测案例第四阶段线性分类算法√分类鸢尾花数据集√音乐曲风分类√SV
- 文本主题模型之潜在语义索引(LSI)
多尝试多记录多积累
好文章的搬运工:https://www.cnblogs.com/pinard/p/6805861.html先对矩阵做SVD分解,然后利用V矩阵,计算LSI,LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。需要选取主题的k值。LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在
- C++手动实现奇异值分解(SVD)算法:从理论到代码实践
xMathematics
c++算法开发语言
C++手动实现奇异值分解(SVD)算法:从理论到代码实践项目背景与SVD核心概念在矩阵分解的广阔领域中,奇异值分解(SVD)宛如一颗璀璨的明星,占据着核心地位。它是一种强大且通用的矩阵分解技术,能够将任意矩阵分解为特定形式,为众多领域的问题解决提供了有力工具。手动实现SVD具有不可忽视的价值,它能让我们深入理解算法的底层逻辑,而不仅仅是停留在调用库函数的表面应用。矩阵分解的基本形式是将一个矩阵分解
- Open3D(C++) 四元数奇异值分解
点云侠
Open3D学习c++矩阵开发语言3d计算机视觉线性代数
目录一、算法原理1、原理概述2、实现过程3、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。一、算法原理1、原理概述 四元数矩阵的奇异值分解是将一个四元数矩阵分解成三个部分的乘积,即:Q=UΣV
- 机器学习实践——利用SVD简化数据
还迷来
机器学习实战
SVD(奇异值分解)优点:简化数据,去除噪音,提高算法的结果缺点:数据的转换可能难以理解利用SVD,我们可以使用小得多的数据集来表示原始数据集,这样做实际上是去除了噪声和冗余信息,以此达到了优化数据、提高结果的目的。SVD的应用LSA(隐形语义分析)在LSA中,矩阵是由文档和词语组成的,当我们应用SVD时,就会构建出多个奇异值,这些奇异值就代表了文档中的主题或概念,这一特点可以用于更高效的文档搜索
- 青少年编程与数学 02-015 大学数学知识点 02课题、线性代数
明月看潮生
编程与数学第02阶段线性代数青少年编程机器学习编程与数学
青少年编程与数学02-015大学数学知识点02课题、线性代数一、向量与矩阵二、行列式三、线性方程组四、向量空间五、线性变换六、内积空间七、正交变换与对称矩阵八、二次型九、奇异值分解十、应用实例总结线性代数是数学的一个重要分支,广泛应用于物理、计算机科学、工程、经济学等领域。这里是线性代数的主要知识点详细汇总。一、向量与矩阵向量定义:向量是具有大小和方向的量,可以表示为有序数组。运算:加法:对应分量
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 对比与详解:QR 分解、奇异值分解(SVD)与 Schur 分解及其他可产生正交基的方法
DuHz
机器学习人工智能信号处理算法矩阵信息与通信线性代数
对比与详解:QR分解、奇异值分解(SVD)与Schur分解及其他可产生正交基的方法在数值线性代数与矩阵分析中,常见的能产生正交(或酉)矩阵的分解方法包括QR分解、奇异值分解(SVD)、Schur分解等。这些方法虽然都会产生一个(或多个)正交矩阵,但它们在适用范围、分解形式、计算重点和应用场景等方面各不相同。本文将尽量对这些分解方法进行系统地介绍与对比。1.正交矩阵(Orthogonal/Unita
- 奇异值分解(SVD)
文弱_书生
乱七八糟神经网络人工智能
奇异值分解(SVD)介绍奇异值分解(SVD),这是最强大的矩阵分解技术之一。SVD广泛应用于机器学习、数据科学和其他计算领域,用于降维、降噪和矩阵近似等应用。与仅适用于方阵的特征分解不同,SVD可以应用于任何矩阵,使其成为一种多功能工具。在这里煮啵将分解SVD背后的理论,通过手动计算示例进行分析,并展示如何在Python中实现SVD。在本节结束时,您将清楚地了解SVD的强大功能及其在机器学习中的应
- 【数学基础】线性代数#1向量和矩阵初步
-一杯为品-
数学线性代数矩阵
本系列内容介绍:主要参考资料:《深度学习》[美]伊恩·古德菲洛等著《机器人数学基础》吴福朝张铃著文章为自学笔记,仅供参考。目录标量、向量、矩阵和张量矩阵运算单位矩阵和逆矩阵线性相关和生成子空间范数特殊类型的矩阵和向量特征分解奇异值分解Moore-Penrose伪逆迹运算行列式标量、向量、矩阵和张量标量标量是一个单独的数。向量向量是一列有序排列的数:x=[x1x2⋮xn]\boldsymbolx=\
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 7.2 奇异值分解的基与矩阵
passxgx
#第7章奇异值分解(SVD)矩阵线性代数
一、奇异值分解奇异值分解(SVD)是线性代数的高光时刻。AAA是一个m×nm\timesnm×n的矩阵,可以是方阵或者长方形矩阵,秩为rrr。我们要对角化AAA,但并不是把它化成X−1AXX^{-1}AXX−1AX的形式。这是因为XXX中的特征向量有三个大问题:它们通常并不正交,并不总是有足够数量的特征向量,并且Ax=λxA\boldsymbolx=\lambda\boldsymbolxAx=λx
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 通往 AI 之路:Python 机器学习入门-线性代数
一小路一
从0开始学习机器学习机器学习人工智能python后端开发语言线性代数
2.1线性代数(机器学习的核心)线性代数是机器学习的基础之一,许多核心算法都依赖矩阵运算。本章将介绍线性代数中的基本概念,包括标量、向量、矩阵、矩阵运算、特征值与特征向量,以及奇异值分解(SVD)。2.1.1标量、向量、矩阵1.标量(Scalar)标量是一个单独的数,例如:a=5在Python中:a=5#标量2.向量(Vector)向量是由多个数值组成的一维数组,例如:v=[2,3,5]Pytho
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- MATLAB基础应用精讲-【数模应用】主成分(pca)分析(附python代码实现)
林聪木
matlab人工智能大数据
目录前言知识储备降维概述算法原理什么是PCAPCA降维过程PCA算法数学步骤选择主成分个数(即k的值)sklearn中参数的解释数学模型协方差协方差矩阵编辑编辑原理推导编辑编辑编辑编辑实际操作主成分分析的计算方法方法1.协方差+特征值分解方法2:奇异值分解对比不同方法计算效率物理意义算法步骤SPSSAU主成分(pca)分析说明1、信息浓缩2、权重计算3、综合得分【综合竞争力】疑难解惑成分得分后用于
- 【Math】奇异值分解(SVD)详解及 Python 实现
SimpleLearing
Math多模态理解python开发语言
1.什么是奇异值分解(SVD)奇异值分解(SingularValueDecomposition,简称SVD)是矩阵分解的一种方法,它将任意矩阵AAA分解为三个矩阵的乘积:A=UΣVTA=U\SigmaV^TA=UΣVT其中:AAA是m×nm\timesnm×n的矩阵。UUU是m×mm\timesmm×m的酉矩阵,包含AATAA^TAAT的特征向量。Σ\SigmaΣ是一个m×nm\timesnm×n
- 奇异值分解求线性方程组的最小二乘解
果壳中的robot
计算机视觉线性代数算法矩阵
线性方程组一般考虑两类:非齐次线性方程组:Ax=b齐次线性方程组:Ax=0A是m*n矩阵,x是n*1的向量,b是m*1的向量。此类问题可以很方便地采用SVD奇异值分解来求解。一.讨论基于线性代数的解析解关于线性方程组的解析解存在性的讨论在之前的博客中已经介绍,主要基于向量组的线性相关性理论。链接为:【线性代数】齐次与非齐次线性方程组有解的条件。主要结论为:对于齐次线性方程组Ax=0:Ax=0有非零
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa