linux页框回收之shrink_node函数源码剖析

概述 

《Linux内存回收入口_nginux的博客-CSDN博客》前文我们概略的描述了几种内存回收入口,我们知道几种回收入口最终都会调用进入shrink_node函数,本文将以Linux 5.9源码来描述shrink_node函数的源码实现。

函数调用流程图

linux页框回收之shrink_node函数源码剖析_第1张图片

 scan_control数据结构

struct scan_control {
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

	/*
	 * The memory cgroup that hit its limit and as a result is the
	 * primary target of this reclaim invocation.
	 */
	struct mem_cgroup *target_mem_cgroup;

	/*
	 * Scan pressure balancing between anon and file LRUs
	 */
	unsigned long	anon_cost;
	unsigned long	file_cost;

	/* Can active pages be deactivated as part of reclaim? */
    //是否能从active lru列表进行deactivate的reclaim
#define DEACTIVATE_ANON 1
#define DEACTIVATE_FILE 2
	unsigned int may_deactivate:2;
    //如果是1:代表强制进行deactivate,即同时deactivate file和anon
    //如果是0,按需进行deactivate file或者anon,具体条件见下面shrink_node源码分析
	unsigned int force_deactivate:1;
	unsigned int skipped_deactivate:1;

	/* Writepage batching in laptop mode; RECLAIM_WRITE */
	unsigned int may_writepage:1;

	/* Can mapped pages be reclaimed? */
	unsigned int may_unmap:1;

	/* Can pages be swapped as part of reclaim? */
	unsigned int may_swap:1;

	/*
	 * Cgroups are not reclaimed below their configured memory.low,
	 * unless we threaten to OOM. If any cgroups are skipped due to
	 * memory.low and nothing was reclaimed, go back for memory.low.
	 */
	unsigned int memcg_low_reclaim:1;
	unsigned int memcg_low_skipped:1;

	unsigned int hibernation_mode:1;

	/* One of the zones is ready for compaction */
	unsigned int compaction_ready:1;

	/* There is easily reclaimable cold cache in the current node */
    //设置为1代表只回收file page cache,不回收aone page
	unsigned int cache_trim_mode:1;

	/* The file pages on the current node are dangerously low */
    //设置1代表只回收aone page,不回收file page
	unsigned int file_is_tiny:1;

	/* Allocation order */
	s8 order;

	/* Scan (total_size >> priority) pages at once */
	s8 priority;

	/* The highest zone to isolate pages for reclaim from */
	s8 reclaim_idx;

	/* This context's GFP mask */
	gfp_t gfp_mask;

	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

	struct {
		unsigned int dirty;
		unsigned int unqueued_dirty;
		unsigned int congested;
		unsigned int writeback;
		unsigned int immediate;
		unsigned int file_taken;
		unsigned int taken;
	} nr;

	/* for recording the reclaimed slab by now */
	struct reclaim_state reclaim_state;
};
shrink_node函数

static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
{
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long nr_reclaimed, nr_scanned;
	struct lruvec *target_lruvec;
	bool reclaimable = false;
	unsigned long file;

	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);

again:
	memset(&sc->nr, 0, sizeof(sc->nr));

	nr_reclaimed = sc->nr_reclaimed;
	nr_scanned = sc->nr_scanned;

	/*
	 * Determine the scan balance between anon and file LRUs.
	 */
	spin_lock_irq(&pgdat->lru_lock);
	sc->anon_cost = target_lruvec->anon_cost;
	sc->file_cost = target_lruvec->file_cost;
	spin_unlock_irq(&pgdat->lru_lock);

	/*
	 * Target desirable inactive:active list ratios for the anon
	 * and file LRU lists.
	 */
	if (!sc->force_deactivate) {
		unsigned long refaults;

		refaults = lruvec_page_state(target_lruvec,
				WORKINGSET_ACTIVATE_ANON);
        //anon的refaults值比上次回收发生了变化,或者inactive anon很少,设置
        //DEACTIVATE_ANON表示需要deactivate anon
		if (refaults != target_lruvec->refaults[0] ||
			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
			sc->may_deactivate |= DEACTIVATE_ANON;
		else
			sc->may_deactivate &= ~DEACTIVATE_ANON;

		/*
		 * When refaults are being observed, it means a new
		 * workingset is being established. Deactivate to get
		 * rid of any stale active pages quickly.
		 */
		refaults = lruvec_page_state(target_lruvec,
				WORKINGSET_ACTIVATE_FILE);
		if (refaults != target_lruvec->refaults[1] ||
		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
			sc->may_deactivate |= DEACTIVATE_FILE;
		else
			sc->may_deactivate &= ~DEACTIVATE_FILE;
	} else
		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;

	/*
	 * If we have plenty of inactive file pages that aren't
	 * thrashing, try to reclaim those first before touching
	 * anonymous pages.
	 */
    //file是inactive file的数量
	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
        //只回收file page,影响get_scan_count
		sc->cache_trim_mode = 1;
	else
		sc->cache_trim_mode = 0;

	/*
	 * Prevent the reclaimer from falling into the cache trap: as
	 * cache pages start out inactive, every cache fault will tip
	 * the scan balance towards the file LRU.  And as the file LRU
	 * shrinks, so does the window for rotation from references.
	 * This means we have a runaway feedback loop where a tiny
	 * thrashing file LRU becomes infinitely more attractive than
	 * anon pages.  Try to detect this based on file LRU size.
	 */
	if (!cgroup_reclaim(sc)) {
		unsigned long total_high_wmark = 0;
		unsigned long free, anon;
		int z;

		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
			   node_page_state(pgdat, NR_INACTIVE_FILE);

		for (z = 0; z < MAX_NR_ZONES; z++) {
			struct zone *zone = &pgdat->node_zones[z];
			if (!managed_zone(zone))
				continue;

			total_high_wmark += high_wmark_pages(zone);
		}

		/*
		 * Consider anon: if that's low too, this isn't a
		 * runaway file reclaim problem, but rather just
		 * extreme pressure. Reclaim as per usual then.
		 */
		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
        //设置1代表只回收aone page,不回收file page
		sc->file_is_tiny =
			file + free <= total_high_wmark &&
			!(sc->may_deactivate & DEACTIVATE_ANON) &&
			anon >> sc->priority;
	}
    //回收的核心函数,后面文章专门分析
	shrink_node_memcgs(pgdat, sc);

	if (reclaim_state) {
		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
		reclaim_state->reclaimed_slab = 0;
	}

	/* Record the subtree's reclaim efficiency */
	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
		   sc->nr_scanned - nr_scanned,
		   sc->nr_reclaimed - nr_reclaimed);

    //这一轮回收到了页面
	if (sc->nr_reclaimed - nr_reclaimed)
		reclaimable = true;

    //只允许kswapd线程设置这些flag,因为只有kswapd能clear这些flag,避免混乱
    //比如memcg reclaim也能设置,没法保证kswapd肯定会被wakeup去clear这些标志
	if (current_is_kswapd()) {
		/*
		 * If reclaim is isolating dirty pages under writeback,
		 * it implies that the long-lived page allocation rate
		 * is exceeding the page laundering rate. Either the
		 * global limits are not being effective at throttling
		 * processes due to the page distribution throughout
		 * zones or there is heavy usage of a slow backing
		 * device. The only option is to throttle from reclaim
		 * context which is not ideal as there is no guarantee
		 * the dirtying process is throttled in the same way
		 * balance_dirty_pages() manages.
		 *
		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
		 * count the number of pages under pages flagged for
		 * immediate reclaim and stall if any are encountered
		 * in the nr_immediate check below.
		 */
        //设置PGDAT_DIRTY代表reclaim发现很多页面正在回写
		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
			set_bit(PGDAT_WRITEBACK, &pgdat->flags);

		/* Allow kswapd to start writing pages during reclaim.*/
        设置PGDAT_DIRTY代表reclaim发现很多脏页
		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
			set_bit(PGDAT_DIRTY, &pgdat->flags);

		/*
		 * If kswapd scans pages marked for immediate
		 * reclaim and under writeback (nr_immediate), it
		 * implies that pages are cycling through the LRU
		 * faster than they are written so also forcibly stall.
		 */
		if (sc->nr.immediate)
			congestion_wait(BLK_RW_ASYNC, HZ/10);
	}

	/*
	 * Tag a node/memcg as congested if all the dirty pages
	 * scanned were backed by a congested BDI and
	 * wait_iff_congested will stall.
	 *
	 * Legacy memcg will stall in page writeback so avoid forcibly
	 * stalling in wait_iff_congested().
	 */
    //只允许kswapd线程设置LRUVEC_CONGESTED,因为只有kswapd能clear LRUVEC_CONGESTED,
    //比如memcg reclaim也能设置,没法保证kswap能唤醒去clear LRUVEC_CONGESTED,导致
    //direct reclaim阻塞在wait_iff_congested
	if ((current_is_kswapd() ||
	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);

	/*
	 * Stall direct reclaim for IO completions if underlying BDIs
	 * and node is congested. Allow kswapd to continue until it
	 * starts encountering unqueued dirty pages or cycling through
	 * the LRU too quickly.
	 */
    //如果是非kswapd线程,且判定当前回收设置过拥塞flag,就要等待,所以direct reclaim
    //会被阻塞
	if (!current_is_kswapd() && current_may_throttle() &&
	    !sc->hibernation_mode &&
	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
		wait_iff_congested(BLK_RW_ASYNC, HZ/10);

    //如果需要继续回收,就goto again继续
	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
				    sc))
		goto again;

	/*
	 * Kswapd gives up on balancing particular nodes after too
	 * many failures to reclaim anything from them and goes to
	 * sleep. On reclaim progress, reset the failure counter. A
	 * successful direct reclaim run will revive a dormant kswapd.
	 */
	if (reclaimable)
		pgdat->kswapd_failures = 0;
}
should_continue_reclaim 

/*
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_pages() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
 */
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{
	unsigned long pages_for_compaction;
	unsigned long inactive_lru_pages;
	int z;

	/* If not in reclaim/compaction mode, stop */
	if (!in_reclaim_compaction(sc))
		return false;

	/*
	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
	 * number of pages that were scanned. This will return to the caller
	 * with the risk reclaim/compaction and the resulting allocation attempt
	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
	 * allocations through requiring that the full LRU list has been scanned
	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
	 * scan, but that approximation was wrong, and there were corner cases
	 * where always a non-zero amount of pages were scanned.
	 */
	if (!nr_reclaimed)
		return false;

    //compaction_suitable会检查水位是否已满足条件(要根据orderPAGE_ALLOC_COSTLY_ORDER
    //使用不同的watermark,如果不满足就不会返回success/continue
	/* If compaction would go ahead or the allocation would succeed, stop */
	for (z = 0; z <= sc->reclaim_idx; z++) {
		struct zone *zone = &pgdat->node_zones[z];
		if (!managed_zone(zone))
			continue;

        //满足了水位return false,代表不要继续shrink_node了
		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
		case COMPACT_SUCCESS:
		case COMPACT_CONTINUE:
			return false;
		default:
			/* check next zone */
			;
		}
	}

	/*
	 * If we have not reclaimed enough pages for compaction and the
	 * inactive lists are large enough, continue reclaiming
	 */
    //上面水位检查不通过,且也没有reclaim足够的page来做compaction,那就继续reclaim吧
	pages_for_compaction = compact_gap(sc->order);
	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
	if (get_nr_swap_pages() > 0)
		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);

	return inactive_lru_pages > pages_for_compaction;
}

 compaction_suitable会判定当前水位是否满足order申请,如果满足了那么COMPACT_SUCCESS,说明也不需要继续compact了;如果不满了说明还没有回到足够order申请的内存,逻辑会继续往下走到inactive_lru_pages > pages_for_compaction逻辑判定,如果inactive lru中有大于2被申请order的页面,那就继续扫描回收

参考文章:

[PATCH v2 4/4] mm/vmscan: Don't mess with pgdat->flags in memcg reclaim. - Andrey Ryabinin

Linux 内存管理_workingset内存_jianchwa的博客-CSDN博客

你可能感兴趣的:(内存子系统,linux,操作系统基本原理,内核)