一. 数据倾斜的现象
1、spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个程序的运行速度(分布式程序运行的速度是由最慢的那个task决定的)比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时。这种情况很常见。
2、原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异常栈,是我们写的业务代码造成的。(过多的数据在同一个task中执行,将会把executor撑爆,造成OOM,程序终止运行)这种情况比较少见。
一个理想的分布式程序:

发生数据倾斜时,任务的执行速度由最大的那个任务决定:

二. 数据倾斜的原因,如何定位导致数据倾斜的代码
数据倾斜只会发生在shuffle过程中。这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。
数据问题
- key本身分布不均匀(包括大量的key为空)
- key的设置不合理
spark使用问题
- shuffle时的并发度不够
- 计算方式有误
数据倾斜只会发生在shuffle过程中。这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。
某个task执行特别慢的情况
首先要看的,就是数据倾斜发生在第几个stage中。
如果是用yarn-client模式提交,那么本地是直接可以看到log的,可以在log中找到当前运行到了第几个stage;如果是用yarn-cluster模式提交,则可以通过Spark Web UI来查看当前运行到了第几个stage。此外,无论是使用yarn-client模式还是yarn-cluster模式,我们都可以在Spark Web UI上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜。
比如下图中,倒数第三列显示了每个task的运行时间。明显可以看到,有的task运行特别快,只需要几秒钟就可以运行完;而有的task运行特别慢,需要几分钟才能运行完,此时单从运行时间上看就已经能够确定发生数据倾斜了。此外,倒数第一列显示了每个task处理的数据量,明显可以看到,运行时间特别短的task只需要处理几百KB的数据即可,而运行时间特别长的task需要处理几千KB的数据,处理的数据量差了10倍。此时更加能够确定是发生了数据倾斜。
知道数据倾斜发生在哪一个stage之后,接着我们就需要根据stage划分原理,推算出来发生倾斜的那个stage对应代码中的哪一部分,这部分代码中肯定会有一个shuffle类算子。精准推算stage与代码的对应关系,需要对Spark的源码有深入的理解,这里我们可以介绍一个相对简单实用的推算方法:只要看到Spark代码中出现了一个shuffle类算子或者是Spark SQL的SQL语句中出现了会导致shuffle的语句(比如group by语句),那么就可以判定,以那个地方为界限划分出了前后两个stage。
这里我们就以Spark最基础的入门程序——单词计数来举例,如何用最简单的方法大致推算出一个stage对应的代码。如下示例,在整个代码中,只有一个reduceByKey是会发生shuffle的算子,因此就可以认为,以这个算子为界限,会划分出前后两个stage。
1、stage0,主要是执行从textFile到map操作,以及执行shuffle write操作。shuffle write操作,我们可以简单理解为对pairs RDD中的数据进行分区操作,每个task处理的数据中,相同的key会写入同一个磁盘文件内。
2、stage1,主要是执行从reduceByKey到collect操作,stage1的各个task一开始运行,就会首先执行shuffle read操作。执行shuffle read操作的task,会从stage0的各个task所在节点拉取属于自己处理的那些key,然后对同一个key进行全局性的聚合或join等操作,在这里就是对key的value值进行累加。stage1在执行完reduceByKey算子之后,就计算出了最终的wordCounts RDD,然后会执行collect算子,将所有数据拉取到Driver上,供我们遍历和打印输出。
- val conf = new SparkConf()
- val sc = new SparkContext(conf)
-
- val lines = sc.textFile("hdfs://...")
- val words = lines.flatMap(_.split(" "))
- val pairs = words.map((_, 1))
- val wordCounts = pairs.reduceByKey(_ + _)
-
- wordCounts.collect().foreach(println(_))
通过对单词计数程序的分析,希望能够让大家了解最基本的stage划分的原理,以及stage划分后shuffle操作是如何在两个stage的边界处执行的。然后我们就知道如何快速定位出发生数据倾斜的stage对应代码的哪一个部分了。比如我们在Spark Web UI或者本地log中发现,stage1的某几个task执行得特别慢,判定stage1出现了数据倾斜,那么就可以回到代码中定位出stage1主要包括了reduceByKey这个shuffle类算子,此时基本就可以确定是由educeByKey算子导致的数据倾斜问题。比如某个单词出现了100万次,其他单词才出现10次,那么stage1的某个task就要处理100万数据,整个stage的速度就会被这个task拖慢。
某个task莫名其妙内存溢出的情况
这种情况下去定位出问题的代码就比较容易了。我们建议直接看yarn-client模式下本地log的异常栈,或者是通过YARN查看yarn-cluster模式下的log中的异常栈。一般来说,通过异常栈信息就可以定位到你的代码中哪一行发生了内存溢出。然后在那行代码附近找找,一般也会有shuffle类算子,此时很可能就是这个算子导致了数据倾斜。
但是大家要注意的是,不能单纯靠偶然的内存溢出就判定发生了数据倾斜。因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出。因此还是要按照上面所讲的方法,通过Spark Web UI查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否是由于数据倾斜才导致了这次内存溢出。
查看导致数据倾斜的key的数据分布情况
知道了数据倾斜发生在哪里之后,通常需要分析一下那个执行了shuffle操作并且导致了数据倾斜的RDD/Hive表,查看一下其中key的分布情况。这主要是为之后选择哪一种技术方案提供依据。针对不同的key分布与不同的shuffle算子组合起来的各种情况,可能需要选择不同的技术方案来解决。
此时根据你执行操作的情况不同,可以有很多种查看key分布的方式:
1、如果是Spark SQL中的group by、join语句导致的数据倾斜,那么就查询一下SQL中使用的表的key分布情况。
2、如果是对Spark RDD执行shuffle算子导致的数据倾斜,那么可以在Spark作业中加入查看key分布的代码,比如RDD.countByKey()。然后对统计出来的各个key出现的次数,collect/take到客户端打印一下,就可以看到key的分布情况。
举例来说,对于上面所说的单词计数程序,如果确定了是stage1的reduceByKey算子导致了数据倾斜,那么就应该看看进行reduceByKey操作的RDD中的key分布情况,在这个例子中指的就是pairs RDD。如下示例,我们可以先对pairs采样10%的样本数据,然后使用countByKey算子统计出每个key出现的次数,最后在客户端遍历和打印样本数据中各个key的出现次数。
- val sampledPairs = pairs.sample(false, 0.1)
- val sampledWordCounts = sampledPairs.countByKey()
- sampledWordCounts.foreach(println(_))
三、数据倾斜发生的原理
数据倾斜的原理很简单:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。比如大部分key对应10条数据,但是个别key却对应了100万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了;但是个别task可能分配到了100万数据,要运行一两个小时。因此,整个Spark作业的运行进度是由运行时间最长的那个task决定的。
因此出现数据倾斜的时候,Spark作业看起来会运行得非常缓慢,甚至可能因为某个task处理的数据量过大导致内存溢出。
下图就是一个很清晰的例子:hello这个key,在三个节点上对应了总共7条数据,这些数据都会被拉取到同一个task中进行处理;而world和you这两个key分别才对应1条数据,所以另外两个task只要分别处理1条数据即可。此时第一个task的运行时间可能是另外两个task的7倍,而整个stage的运行速度也由运行最慢的那个task所决定。
三. 数据倾斜的后果
- spark中一个stage的执行时间受限于最后那个执行完的task,因此运行缓慢的任务会拖累整个程序的运行速度(分布式程序运行的速度是由最慢的那个task决定的)。
- 过多的数据在同一个task中执行,将会把executor撑爆,造成OOM,程序终止运行。
四. 数据问题造成的数据倾斜
发现数据倾斜的时候,不要急于提高executor的资源,修改参数或是修改程序,首先要检查数据本身,是否存在异常数据。
找出异常的key
如果任务长时间卡在最后最后1个(几个)任务,首先要对key进行抽样分析,判断是哪些key造成的。
选取key,对数据进行抽样,统计出现的次数,根据出现次数大小排序取出前几个
df.select("key").sample(false,0.1).(k=>(k,1)).reduceBykey(_+_).map(k=>(k._2,k._1)).sortByKey(false).take(10)
如果发现多数数据分布都较为平均,而个别数据比其他数据大上若干个数量级,则说明发生了数据倾斜。
经过分析,倾斜的数据主要有以下三种情况:
- null(空值)或是一些无意义的信息()之类的,大多是这个原因引起。
- 无效数据,大量重复的测试数据或是对结果影响不大的有效数据。
- 有效数据,业务导致的正常数据分布。(小表Broadcast,大表mapPartition 代替map)
解决办法
第1,2种情况,直接对数据进行过滤即可。
第3种情况则需要进行一些特殊操作,常见的有以下几种做法。
- 隔离执行,将异常的key过滤出来单独处理,最后与正常数据的处理结果进行union操作。
- 对key先添加随机值,进行操作后,去掉随机值,再进行一次操作。
- 使用
reduceByKey
代替 groupByKey
- 使用map join。
举例:
如果使用reduceByKey
因为数据倾斜造成运行失败的问题。具体操作如下:
- 将原始的
key
转化为 key + 随机值
(例如Random.nextInt)
- 对数据进行
reduceByKey(func)
- 将
key + 随机值
转成 key
- 再对数据进行
reduceByKey(func)
tip1: 如果此时依旧存在问题,建议筛选出倾斜的数据单独处理。最后将这份数据与正常的数据进行union即可。
tips2: 单独处理异常数据时,可以配合使用Map Join解决。
数据倾斜的解决方案
解决方案一:使用Hive ETL预处理数据
方案适用场景:导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。
方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。
方案实现原理:这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。
方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。
方案缺点:治标不治本,Hive ETL中还是会发生数据倾斜。
方案实践经验:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。
项目实践经验:在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。
解决方案二:过滤少数导致倾斜的key
方案适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。
方案实现思路:如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。
方案实现原理:将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。
方案优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。
方案缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。
方案实践经验:在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。
解决方案三:提高shuffle操作的并行度
方案适用场景:如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。
方案实现思路:在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。
方案实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示。
方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。
方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。
方案实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用嘴简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。
解决方案四:两阶段聚合(局部聚合+全局聚合)
方案适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。
方案实现思路:这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。
方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。
方案优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。
方案缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。
- // 第一步,给RDD中的每个key都打上一个随机前缀。
- JavaPairRDD randomPrefixRdd = rdd.mapToPair(
- new PairFunction, String, Long>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2 call(Tuple2 tuple)
- throws Exception {
- Random random = new Random();
- int prefix = random.nextInt(10);
- return new Tuple2(prefix + "_" + tuple._1, tuple._2);
- }
- });
-
- // 第二步,对打上随机前缀的key进行局部聚合。
- JavaPairRDD localAggrRdd = randomPrefixRdd.reduceByKey(
- new Function2() {
- private static final long serialVersionUID = 1L;
- @Override
- public Long call(Long v1, Long v2) throws Exception {
- return v1 + v2;
- }
- });
-
- // 第三步,去除RDD中每个key的随机前缀。
- JavaPairRDD removedRandomPrefixRdd = localAggrRdd.mapToPair(
- new PairFunction, Long, Long>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2 call(Tuple2 tuple)
- throws Exception {
- long originalKey = Long.valueOf(tuple._1.split("_")[1]);
- return new Tuple2(originalKey, tuple._2);
- }
- });
-
- // 第四步,对去除了随机前缀的RDD进行全局聚合。
- JavaPairRDD globalAggrRdd = removedRandomPrefixRdd.reduceByKey(
- new Function2() {
- private static final long serialVersionUID = 1L;
- @Override
- public Long call(Long v1, Long v2) throws Exception {
- return v1 + v2;
- }
- });
解决方案五:将reduce join转为map join
方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。
方案实现思路:不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量;接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。
方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。
方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。
方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。
- // 首先将数据量比较小的RDD的数据,collect到Driver中来。
- List> rdd1Data = rdd1.collect()
- // 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。
- // 可以尽可能节省内存空间,并且减少网络传输性能开销。
- final Broadcast
>> rdd1DataBroadcast = sc.broadcast(rdd1Data);
-
- // 对另外一个RDD执行map类操作,而不再是join类操作。
- JavaPairRDD> joinedRdd = rdd2.mapToPair(
- new PairFunction, String, Tuple2>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2> call(Tuple2 tuple)
- throws Exception {
- // 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。
- List> rdd1Data = rdd1DataBroadcast.value();
- // 可以将rdd1的数据转换为一个Map,便于后面进行join操作。
- Map rdd1DataMap = new HashMap();
- for(Tuple2 data : rdd1Data) {
- rdd1DataMap.put(data._1, data._2);
- }
- // 获取当前RDD数据的key以及value。
- String key = tuple._1;
- String value = tuple._2;
- // 从rdd1数据Map中,根据key获取到可以join到的数据。
- Row rdd1Value = rdd1DataMap.get(key);
- return new Tuple2(key, new Tuple2(value, rdd1Value));
- }
- });
-
- // 这里得提示一下。
- // 上面的做法,仅仅适用于rdd1中的key没有重复,全部是唯一的场景。
- // 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。
- // rdd2中每条数据都可能会返回多条join后的数据。
解决方案六:采样倾斜key并分拆join操作
方案适用场景:两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。
方案实现思路:
1、对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计一下每个key的数量,计算出来数据量最大的是哪几个key。
2、然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀,而不会导致倾斜的大部分key形成另外一个RDD。
3、接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀,不会导致倾斜的大部分key也形成另外一个RDD。
4、再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。
5、而另外两个普通的RDD就照常join即可。
6、最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。
方案实现原理:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。具体原理见下图。
方案优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。
方案缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。
- // 首先从包含了少数几个导致数据倾斜key的rdd1中,采样10%的样本数据。
- JavaPairRDD sampledRDD = rdd1.sample(false, 0.1);
-
- // 对样本数据RDD统计出每个key的出现次数,并按出现次数降序排序。
- // 对降序排序后的数据,取出top 1或者top 100的数据,也就是key最多的前n个数据。
- // 具体取出多少个数据量最多的key,由大家自己决定,我们这里就取1个作为示范。
- JavaPairRDD mappedSampledRDD = sampledRDD.mapToPair(
- new PairFunction, Long, Long>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2 call(Tuple2 tuple)
- throws Exception {
- return new Tuple2(tuple._1, 1L);
- }
- });
- JavaPairRDD countedSampledRDD = mappedSampledRDD.reduceByKey(
- new Function2() {
- private static final long serialVersionUID = 1L;
- @Override
- public Long call(Long v1, Long v2) throws Exception {
- return v1 + v2;
- }
- });
- JavaPairRDD reversedSampledRDD = countedSampledRDD.mapToPair(
- new PairFunction, Long, Long>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2 call(Tuple2 tuple)
- throws Exception {
- return new Tuple2(tuple._2, tuple._1);
- }
- });
- final Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2;
-
- // 从rdd1中分拆出导致数据倾斜的key,形成独立的RDD。
- JavaPairRDD skewedRDD = rdd1.filter(
- new Function, Boolean>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Boolean call(Tuple2 tuple) throws Exception {
- return tuple._1.equals(skewedUserid);
- }
- });
- // 从rdd1中分拆出不导致数据倾斜的普通key,形成独立的RDD。
- JavaPairRDD commonRDD = rdd1.filter(
- new Function, Boolean>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Boolean call(Tuple2 tuple) throws Exception {
- return !tuple._1.equals(skewedUserid);
- }
- });
-
- // rdd2,就是那个所有key的分布相对较为均匀的rdd。
- // 这里将rdd2中,前面获取到的key对应的数据,过滤出来,分拆成单独的rdd,并对rdd中的数据使用flatMap算子都扩容100倍。
- // 对扩容的每条数据,都打上0~100的前缀。
- JavaPairRDD skewedRdd2 = rdd2.filter(
- new Function, Boolean>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Boolean call(Tuple2 tuple) throws Exception {
- return tuple._1.equals(skewedUserid);
- }
- }).flatMapToPair(new PairFlatMapFunction, String, Row>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Iterable> call(
- Tuple2 tuple) throws Exception {
- Random random = new Random();
- List> list = new ArrayList>();
- for(int i = 0; i < 100; i++) {
- list.add(new Tuple2(i + "_" + tuple._1, tuple._2));
- }
- return list;
- }
-
- });
-
- // 将rdd1中分拆出来的导致倾斜的key的独立rdd,每条数据都打上100以内的随机前缀。
- // 然后将这个rdd1中分拆出来的独立rdd,与上面rdd2中分拆出来的独立rdd,进行join。
- JavaPairRDD> joinedRDD1 = skewedRDD.mapToPair(
- new PairFunction, String, String>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2 call(Tuple2 tuple)
- throws Exception {
- Random random = new Random();
- int prefix = random.nextInt(100);
- return new Tuple2(prefix + "_" + tuple._1, tuple._2);
- }
- })
- .join(skewedUserid2infoRDD)
- .mapToPair(new PairFunction>, Long, Tuple2>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2> call(
- Tuple2> tuple)
- throws Exception {
- long key = Long.valueOf(tuple._1.split("_")[1]);
- return new Tuple2>(key, tuple._2);
- }
- });
-
- // 将rdd1中分拆出来的包含普通key的独立rdd,直接与rdd2进行join。
- JavaPairRDD> joinedRDD2 = commonRDD.join(rdd2);
-
- // 将倾斜key join后的结果与普通key join后的结果,uinon起来。
- // 就是最终的join结果。
- JavaPairRDD> joinedRDD = joinedRDD1.union(joinedRDD2);
解决方案七:使用随机前缀和扩容RDD进行join
方案适用场景:如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。
方案实现思路:
1、该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。
2、然后将该RDD的每条数据都打上一个n以内的随机前缀。
3、同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。
4、最后将两个处理后的RDD进行join即可。
方案实现原理:将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。
方案优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。
方案缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。
方案实践经验:曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。
- // 首先将其中一个key分布相对较为均匀的RDD膨胀100倍。
- JavaPairRDD expandedRDD = rdd1.flatMapToPair(
- new PairFlatMapFunction, String, Row>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Iterable> call(Tuple2 tuple)
- throws Exception {
- List> list = new ArrayList>();
- for(int i = 0; i < 100; i++) {
- list.add(new Tuple2(0 + "_" + tuple._1, tuple._2));
- }
- return list;
- }
- });
-
- // 其次,将另一个有数据倾斜key的RDD,每条数据都打上100以内的随机前缀。
- JavaPairRDD mappedRDD = rdd2.mapToPair(
- new PairFunction, String, String>() {
- private static final long serialVersionUID = 1L;
- @Override
- public Tuple2 call(Tuple2 tuple)
- throws Exception {
- Random random = new Random();
- int prefix = random.nextInt(100);
- return new Tuple2(prefix + "_" + tuple._1, tuple._2);
- }
- });
-
- // 将两个处理后的RDD进行join即可。
- JavaPairRDD> joinedRDD = mappedRDD.join(expandedRDD);
解决方案八:多种方案组合使用
在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的某一种基本就可以解决。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种方案组合起来使用。比如说,我们针对出现了多个数据倾斜环节的Spark作业,可以先运用解决方案一和二,预处理一部分数据,并过滤一部分数据来缓解;其次可以对某些shuffle操作提升并行度,优化其性能;最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。大家需要对这些方案的思路和原理都透彻理解之后,在实践中根据各种不同的情况,灵活运用多种方案,来解决自己的数据倾斜问题。
五. spark使用不当造成的数据倾斜
1. 提高shuffle并行度
dataFrame
和sparkSql
可以设置spark.sql.shuffle.partitions
参数控制shuffle的并发度,默认为200。
rdd操作可以设置spark.default.parallelism
控制并发度,默认参数由不同的Cluster Manager控制。
局限性: 只是让每个task执行更少的不同的key。无法解决个别key特别大的情况造成的倾斜,如果某些key的大小非常大,即使一个task单独执行它,也会受到数据倾斜的困扰。
2. 使用map join 代替reduce join
在小表不是特别大(取决于你的executor大小)的情况下使用,可以使程序避免shuffle的过程,自然也就没有数据倾斜的困扰了。
局限性: 因为是先将小数据发送到每个executor上,所以数据量不能太大。
六、使用broadcast(小表使用) 和mapPartition(大表使用)减少数据传输等消耗
将多份数据进行关联是数据处理过程中非常普遍的用法,不过在分布式计算系统中,这个问题往往会变的非常麻烦,因为框架提供的 join 操作一般会将所有数据根据 key 发送到所有的 reduce 分区中去,也就是 shuffle 的过程。造成大量的网络以及磁盘IO消耗,运行效率极其低下,这个过程一般被称为 reduce-side-join。
如果其中有张表较小的话,我们则可以自己实现在 map 端实现数据关联,跳过大量数据进行 shuffle 的过程,运行时间得到大量缩短,根据不同数据可能会有几倍到数十倍的性能提升,这个过程是map-side-join。
下文将会以一个 demo 进行说明。
何时使用
在海量数据中匹配少量特定数据
原理
以前写过一篇关于spark-sql中利用broadcast join进行优化的文章,原理与那篇文章相同,这里重新画了图。
http://blog.csdn.net/lsshlsw/article/details/48694893
reduce-side-join 的缺陷在于会将key相同的数据发送到同一个partition中进行运算,大数据集的传输需要长时间的IO,同时任务并发度收到限制,还可能造成数据倾斜。
reduce-side-join 运行图如下

map-side-join 运行图如下

代码说明
数据1(个别人口信息):
身份证 姓名 ...
110 lsw
222 yyy
数据2(全国学生信息):
身份证 学校名称 学号 ...
110 s1 211
111 s2 222
112 s3 233
113 s2 244
期望得到的数据 :
身份证 姓名 学校名称
110 lsw s1
将少量的数据转化为Map进行广播,广播会将此 Map 发送到每个节点中,如果不进行广播,每个task执行时都会去获取该Map数据,造成了性能浪费。
val people_info = sc.parallelize(Array(("110","lsw"),("222","yyy"))).collectAsMap()
val people_bc = sc.broadcast(people_info)
对大数据进行遍历,使用mapPartition而不是map,因为mapPartition是在每个partition中进行操作,因此可以减少遍历时新建broadCastMap.value对象的空间消耗,同时匹配不到的数据也不会返回()。
val res = student_all.mapPartitions(iter =>{
val stuMap = people_bc.value
val arrayBuffer = ArrayBuffer[(String,String,String)]()
iter.foreach{case (idCard,school,sno) =>{
if(stuMap.contains(idCard)){
arrayBuffer.+= ((idCard, stuMap.getOrElse(idCard,""),school))
}
}}
arrayBuffer.iterator
})
也可以使用 for 的守卫机制来实现上述代码
val res1 = student_all.mapPartitions(iter => {
val stuMap = people_bc.value
for{
(idCard, school, sno) <- iter
if(stuMap.contains(idCard))
} yield (idCard, stuMap.getOrElse(idCard,""),school)
})
完整代码
import org.apache.spark.{SparkContext, SparkConf}
import scala.collection.mutable.ArrayBuffer
object joinTest extends App{
val conf = new SparkConf().setMaster("local[2]").setAppName("test")
val sc = new SparkContext(conf)
/**
* map-side-join
* 取出小表中出现的用户与大表关联后取出所需要的信息
* */
val people_info = sc.parallelize(Array(("110","lsw"),("222","yyy"))).collectAsMap()
val student_all = sc.parallelize(Array(("110","s1","211"),
("111","s2","222"),
("112","s3","233"),
("113","s2","244")))
val people_bc = sc.broadcast(people_info)
/**
* 使用mapPartition而不是用map,减少创建broadCastMap.value的空间消耗
* 同时匹配不到的数据也不需要返回()
* */
val res = student_all.mapPartitions(iter =>{
val stuMap = people_bc.value
val arrayBuffer = ArrayBuffer[(String,String,String)]()
iter.foreach{case (idCard,school,sno) =>{
if(stuMap.contains(idCard)){
arrayBuffer.+= ((idCard, stuMap.getOrElse(idCard,""),school))
}
}}
arrayBuffer.iterator
})
/**
* 使用另一种方式实现
* 使用for的守卫
* */
val res1 = student_all.mapPartitions(iter => {
val stuMap = people_bc.value
for{
(idCard, school, sno) <- iter
if(stuMap.contains(idCard))
} yield (idCard, stuMap.getOrElse(idCard,""),school)
})
res.foreach(println)