在python中训练Gnian的Caffe模型

train.py [-h] -m MODEL -p PREFIX [-d DATA_ROOT] [-n FOLDNUMS] [-a]
                [-i ITERATIONS] [-s SEED] [-t TEST_INTERVAL] [-o OUTPREFIX]
                [-g GPU] [-c CONT] [-k] [-r] [--avg_rotations] [--keep_best]
                [--dynamic] [--cyclic] [--solver SOLVER] [--lr_policy LR_POLICY]
                [--step_reduce STEP_REDUCE] [--step_end STEP_END]
                [--step_when STEP_WHEN] [--base_lr BASE_LR]
                [--momentum MOMENTUM] [--weight_decay WEIGHT_DECAY]
                [--gamma GAMMA] [--power POWER] [--weights WEIGHTS]
                [-p2 PREFIX2] [-d2 DATA_ROOT2] [--data_ratio DATA_RATIO]


# Database Layer

* Layer type: `Data`
* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DataLayer.html)
* Header: [`./include/caffe/layers/data_layer.hpp`]
* CPU implementation: [`./src/caffe/layers/data_layer.cpp`]
 

* Parameters (`DataParameter data_param`)

* Parameters
    - Required
        - `source`: the name of the directory containing the database
        - `batch_size`: the number of inputs to process at one time
    - Optional
        - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd
        - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB`

# Absolute Value Layer

* Layer type: `AbsVal`

* Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: "AbsVal"
      }

The `AbsVal` layer computes the output as abs(x) for each input element x.

# Accuracy and Top-k

`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step.

* Layer type: `Accuracy`
* Header: [`./include/caffe/layers/accuracy_layer.hpp`]
* CPU implementation: [`./src/caffe/layers/accuracy_layer.cpp`]
* CUDA GPU implementation: [`./src/caffe/layers/accuracy_layer.cu`]

## Parameters
* Parameters (`AccuracyParameter accuracy_param`)
* From [`./src/caffe/proto/caffe.proto`]

{% highlight Protobuf %}
{% include proto/AccuracyParameter.txt %}
{% endhighlight %}

# Bias Layer

* Layer type: `Bias`

# BNLL Layer

* Layer type: `BNLL`

The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x.“BNLL”(二项式正态对数似然)层将每个输入元素 x 的输出计算为 log(1 + exp(x))。

## Parameters
No parameters.

## Sample

      layer {
        name: "layer"
        bottom: "in"
        top: "out"
        type: BNLL
      }

# Concat Layer

* Layer type: `Concat`
* Input
    - `n_i * c_i * h * w` for each input blob i from 1 to K.
* Output
    - if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same.
    - if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same.
* Sample

      layer {
        name: "concat"
        bottom: "in1"
        bottom: "in2"
        top: "out"
        type: "Concat"
        concat_param {
          axis: 1
        }
      }

The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob.

# Contrastive Loss Layer # 对比损失层

* Layer type: `ContrastiveLoss`

## Parameters

* Parameters (`ContrastiveLossParameter contrastive_loss_param`)


# Crop Layer 裁剪

* Layer type: `Crop`
* [Doxygen Docum


# Deconvolution Layer 反卷积

* Layer type: `Deconvolution`

Uses the same parameters as the Convolution layer.

# Dummy Data Layer 虚拟数据层


# Parameter Layer


# Threshold Layer


# Python Layer

* Layer type: `Python`
* Header: [`./include/caffe/layers/python_layer.hpp`]

The Python layer allows users to add customized layers without modifying the Caffe core code.

附录


Caffe的python使用方法:

Caffe提供了一个Python API,使您能够使用Python语言更方便地使用Caffe的功能。通过Caffe的Python API,您可以加载和训练模型、进行推理、执行网络层操作等。

以下是一些常用的Caffe Python API功能和用法示例:

1. 导入Caffe模块:

   ```python
   import caffe
   ```

2. 加载网络和模型:

   ```python
   net = caffe.Net('path/to/deploy.prototxt', 'path/to/model.caffemodel', caffe.TEST)
   ```

3. 执行前向传播(推理):

   ```python
   input_data = ...  # 输入数据,numpy数组格式
   net.blobs['data'].data[...] = input_data  # 将输入数据设置到网络的'data'层
   net.forward()  # 进行前向传播计算
   output_data = net.blobs['output'].data  # 获取输出数据
   ```

4. 执行反向传播(训练):

   ```python
   loss = net.blobs['loss'].data  # 获取损失值
   net.zero_grad()  # 清空梯度信息
   net.backward()  # 执行反向传播计算
   net.update()  # 更新网络参数
   ```

5. 提取特征(特征提取):

   ```python
   input_data = ...  # 输入数据,numpy数组格式
   feature = net.blobs['fc7'].data  # 获取'fc7'层的特征向量
   feature = net.forward(data=input_data, end='fc7')['fc7']  # 通过前向传播获取特征
   ```

6. 使用预训练模型进行迁移学习:

   ```python
   pretrained_net = caffe.Net('path/to/pretrained.prototxt', 'path/to/pretrained.caffemodel', caffe.TEST)
   new_net = caffe.Net('path/to/new_net.prototxt', caffe.TRAIN)
   # 将pretrained_net的权重复制到new_net
   for layer_name, blob in pretrained_net.params.items():
       if layer_name in new_net.params:
           for i in range(len(blob)):
               new_net.params[layer_name][i].data[...] = blob[i].data
   ```

你可能感兴趣的:(python,caffe,开发语言)