简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable

绘制nx.Graph时报错TypeError: '_AxesStack' object is not callable

  • 写在最前面
    • 知识图谱可视化
    • 预期
    • 报错
    • 可能的原因
  • 原代码
  • 原因确认
  • 解决后的代码
  • 解决!

写在最前面

实现一个简单的知识图谱的可视化功能。
使用了NetworkX库来构建知识图谱,并使用matplotlib库来绘制图形。

过几天将发布关于#通过noe4j可视化知识图谱#的文章
细节上还在优化

题外话,构建知识图谱真的好慢啊,尤其是自动构建实体之间的关系,代码要跑好久好久
而且不算论文中的创新点,感觉有点鸡肋

知识图谱可视化

知识图谱可视化是将知识图谱的数据以图形化的方式展示出来,以便更加直观地理解、分析和探索知识图谱中的关系与信息。

可以通过交互式的图形界面,对知识图谱中的关系和概念进行探索和分析,并且能够自由地从宏观到微观地进行导航和浏览。

可以应用于搜索引擎、推荐系统、医学研究、商业智能、社交网络、金融分析等领域。

预期

绘制nx.Graph()的graph

报错

TypeError: ‘_AxesStack’ object is not callable

nx.draw(graph, pos, with_labels=True, node_size=3000, font_size=12, node_color='skyblue', font_weight='bold', alpha=0.8, linewidths=0, edge_color='gray')
      9 plt.title("Knowledge Graph")
     10 plt.show()

File D:\Program\Anaconda\lib\site-packages\networkx\drawing\nx_pylab.py:113, in draw(G, pos, ax, **kwds)
    111 cf.set_facecolor("w")
    112 if ax is None:
--> 113     if cf._axstack() is None:
    114         ax = cf.add_axes((0, 0, 1, 1))
    115     else:

TypeError: '_AxesStack' object is not callable

<Figure size 1000x800 with 0 Axes>

可能的原因

这个错误是由于在绘制图形时调用了一个不可调用的对象 _AxesStack,通常这与与变量或函数名冲突有关。检查你的代码是否有其他地方使用了名为 pltax 的变量或函数,导致了该错误。

以下是可能导致问题的一些常见原因和解决方法:

  1. 确保 plt 是 Matplotlib 的 pyplot 对象,并且没有在其他地方被重新定义。在使用 plt 之前,可以尝试在代码的开头添加 import matplotlib.pyplot as plt

  2. 确保没有将变量名 ax 分配为 Axes 对象。Axes 对象是由 plt.subplots()plt.add_axes() 等函数返回的,因此如果使用 ax 作为一个普通变量,可能会导致冲突。

  3. 可能是代码中的其他部分修改了 Matplotlib 的默认行为,导致 AxesStack 不可调用。请检查在绘制图形之前是否有任何涉及 Matplotlib 的自定义设置或修改。

在确认以上问题之后,可以尝试修改代码,并确保绘图部分没有与之前提到的问题冲突,从而避免该错误的出现。

原代码

定义了一个名为draw_graph的函数,该函数接受一个图形对象作为参数,并在绘图中显示该图形。main函数创建了一个空的图形对象,并添加了一些节点和边。

import networkx as nx
import matplotlib.pyplot as plt

def draw_graph(graph):
    pos = nx.spring_layout(graph, seed=42)
    # 下面这行代码有问题,已修改为
    # fig, ax = plt.subplots(figsize=(10, 8))
    plt.figure(figsize=(10, 8))
    nx.draw(graph, pos, with_labels=True, node_size=3000, font_size=12, node_color='skyblue', font_weight='bold', alpha=0.8, linewidths=0, edge_color='gray')
    plt.title("Knowledge Graph")
    plt.show()

def main():
    # 假设已构建好知识图谱
    graph = nx.Graph()
    graph.add_nodes_from(["Entity1", "Entity2", "Entity3"])
    graph.add_edges_from([("Entity1", "Entity2"), ("Entity2", "Entity3")])

    draw_graph(graph)

if __name__ == "__main__":
    main()

原因确认

我遇到的是第二个原因:因为与 Matplotlib 的 Axes 对象(ax)冲突。

为了解决这个问题,尝试在绘制图形时明确指定 Axes 对象。在 plt.subplots() 中创建一个新的 Axes 对象,然后将其传递给 nx.draw() 函数。

解决后的代码

import networkx as nx
import matplotlib.pyplot as plt

def draw_graph(graph):
    pos = nx.spring_layout(graph, seed=42)  # You can use different layout algorithms

    fig, ax = plt.subplots(figsize=(10, 8))
    nx.draw(graph, pos, with_labels=True, node_size=3000, font_size=12, node_color='skyblue', font_weight='bold', alpha=0.8, linewidths=0, edge_color='gray', ax=ax)
    ax.set_title("Knowledge Graph")
    plt.show()

def main():
    # 假设已构建好知识图谱
    graph = nx.Graph()
    graph.add_nodes_from(["Entity1", "Entity2", "Entity3"])
    graph.add_edges_from([("Entity1", "Entity2"), ("Entity2", "Entity3")])

    draw_graph(graph)

if __name__ == "__main__":
    main()

解决!

简单的知识图谱可视化+绘制nx.Graph()时报错TypeError: ‘_AxesStack‘ object is not callable_第1张图片

你可能感兴趣的:(python,人工智能,自然语言处理,深度学习,笔记)