121. 买卖股票的最佳时机 - 力扣(LeetCode)
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
动规五部曲
dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?
其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
class Solution {
public int maxProfit(int[] prices) {
// 找到一个最小的购入点
int low = Integer.MAX_VALUE;
// res不断更新,直到数组循环完毕
int res = 0;
for(int i = 0; i < prices.length; i++){
low = Math.min(prices[i], low);
res = Math.max(prices[i] - low, res);
}
return res;
}
}
class Solution {
public int maxProfit(int[] prices) {
int dp[][] = new int[prices.length][2];
// 0是持有股票所得最多现金,1是不持有股票所得最多现金
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++){
// 持有股票有两种情况,之前买入,刚买入(因为初始资金为0)
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
// 不持有股票有两种情况,之前就不持有,刚卖出
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[prices.length - 1][1];
}
}
122. 买卖股票的最佳时机 II - 力扣(LeetCode)
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
提示:
在动规五部曲中,这个区别主要是体现在递推公式上,其他都和121. 买卖股票的最佳时机 (opens new window)一样一样的。
dp数组的含义:
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
注意这里和121. 买卖股票的最佳时机 (opens new window)唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况。
在121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。
而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。
那么第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。
再来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
class Solution {
public int maxProfit(int[] prices) {
int dp[][] = new int[prices.length][2];
// 0是持有股票所得最多现金,1是不持有股票所得最多现金
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++){
dp[i][0] = Math.max(dp[i - 1][1] - prices[i], dp[i - 1][0]);
dp[i][1] = Math.max(dp[i - 1][0] + prices[i], dp[i - 1][1]);
}
return dp[prices.length - 1][1];
}
}
class Solution {
public int maxProfit(int[] prices) {
int dp[][] = new int [2][2];
//dp[i][0]: holding the stock
//dp[i][1]: not holding the stock
dp[0][0] = - prices[0];
dp[0][1] = 0;
for(int i = 1; i < prices.length; i++){
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i]);
}
return dp[(prices.length - 1) % 2][1];
}
}