- python画图|同时输出二维和三维图
西猫雷婶
python开发语言
前面已经学习了如何输出二维图和三维图,部分文章详见下述链接:python画图|极坐标下的3Dsurface-CSDN博客python画图|垂线标记系列_如何用pyplot画垂直x轴的线-CSDN博客有时候也需要同时输出二位和三维图,因此有必要学习一下。【1】官网教程首先我们打开官网教程,链接如下。https://matplotlib.org/stable/gallery/mplot3d/mixed
- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- 淘宝教育的视频打不开
云雀_
CameraImageQualityTestsoftwareskill
淘宝教育的视频打不开,显示:“亲~该课程还未通过审核哦”因为在学习淘宝教育上的课程:所以想在Ubuntu16.04下观看视频;可是打不开哈Browser:google-chrome-stable(89.0.4389.82-1)尝试其它的Browser,下面的Brwoser好像可以,要用一段时间才知道好用不Browser:palemoon(29.1.1-1.gtk2)(downloadweb:htt
- Stable Diffusion-AI美女模特写真使用InstantID插件(附插件)
快乐星球没有乐
人工智能stablediffusion美女midjourney媒体音视频
ControlNet单元1:上传人脸定位照上传任意一张照片,它的作用是控制最终出图的人物脸部位置。我们可以和第一张图片一样。相关[参数设置如下:控制类型:选择"Instant_ID"预处理器:instant_id_face_keypoints模型:control_instant_id_sdxl控制权重:0.5左右(0.45-0.5)【第四步】图片的生成点击【生成】按钮,我们来看一下最终生成的图片效
- Midjourney和 Stable Diffusion,学谁呢?
Ai君臣
Midjourney是在线的,可以使用文字制作令人惊叹的AI图片。它与StableDiffusion类似,但也有一些区别。Midjourney只能在互联网上使用,并且需要付费。那么,值得为Midjourney付费吗?它与稳定扩散有何不同?MidjourneyvsStableDiffusion——功能比较您将在本节中找到StableDiffusion和Midjourney之间的详细比较。与Midjo
- 【Vidu发布】中国首个长时长、高一致性、高动态性Video AI大模型
叶锦鲤
人工智能
就在昨日(2024年4月27日),北京生数科技有限公司(以下简称“生数科技”)联合清华大学在中关村论坛-未来人工智能先锋论坛上,正式发布中国首个长时长、高一致性、高动态性视频大模型:Vidu。该模型采用生数科技团队原创的Diffusion与Transformer融合的架构U-ViT。据发布会介绍,Vidu不仅支持一键生成长达16秒、分辨率高达1080P的高清视频内容,还能够模拟真实物理世界,拥有丰
- nginx1.16安装
清晨细雨~
nginxcentosnginx安装
参考:https://nginx.org/en/linux_packages.html#RHEL-CentOS1.必备条件sudoyuminstallyum-utils2.设置云仓库创建文件:vi/etc/yum.repos.d/nginx.repo内容如下:[nginx-stable]name=nginxstablerepobaseurl=http://nginx.org/packages/ce
- 谷歌浏览器ChromeDriver 128,129,130驱动下载
下东西不要币多好
Pythonpython
可以试试这个页面:https://googlechromelabs.github.io/chrome-for-testing/#stable我需要的128.0.6613.120就是在这里找到的,浏览器,驱动都能下
- CentOS7 安装Docker,并配置阿里云镜像
JBryan
1、安装Docker1.1、安装gccyum-yinstallgccgcc-c++1.2、安装需要的软件包yuminstall-yyum-utilsdevice-mapper-persistent-datalvm21.3、设置stable镜像仓库yum-config-manager--add-repohttp://mirrors.aliyun.com/docker-ce/linux/centos/
- ERROR: Could not find a version that satisfies the requirement torch==xxx+cuxxx解决方案
神奇宝贝威威
偶得之深度学习pythonpytorch
官网的链接:pipinstalltorch==1.10.0+cu111torchvision==0.11.0+cu111torchaudio==0.10.0-fhttps://download.pytorch.org/whl/torch_stable.html一直下载失败--无法找到满足对torch的要求的版本以及找不到匹配的分发版本的错误。解决方法:使用conda-forge频道Conda-fo
- 滚动条出现时不占用 `div` 空间
昕er
前端
在滚动条出现时不占用div空间,通常可以通过CSS中的scrollbar-gutter属性来控制。以下是实现方式:div{width:100%;height:300px;overflow-y:auto;scrollbar-gutter:stable;/*保证滚动条出现时不会改变布局*/}解释:scrollbar-gutter:stable;:这个属性确保滚动条出现时不会改变div的内容宽度,避免布
- linux 下chrome使用
LittleJessy
安装chromewgethttps://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpmyuminstall./google-chrome-stable_current_x86_64.rpmyuminstallmesa-libOSMesa-develgnu-free-sans-fontswqy-zenhei-fon
- 如何在算家云搭建模型Stable-diffusion-webUI(AI绘画)
算家云
stablediffusionAI作画人工智能算家云大模型计算机视觉AIGC
一、StableDiffusionWebUI简介StableDiffusionWebUI是一个网页版的AI绘画工具,基于强大的绘画模型StableDiffusion,可以实现文生图、图生图等。二、模型搭建流程1.选择主机和镜像(1)进入算家云的“应用社区”,点击搜索或者找到"stable-diffusion-webui,进入详情页后,点击“创建应用”(2)进入“租用实例”页面之后会自动匹配模型,选
- FLUX 1 将像 Stable Diffusion 一样完整支持ControlNet组件
吴脑的键客
AI作画stablediffusion深度学习人工智能
之前InstantX团队做的多合一的FluxControlNet现在开始和ShakkerAI合作并推出了:Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro该模型支持7种控制模式,包括canny(0),tile(1),depth(2),blur(3),pose(4),gray(5)和lowquality(6),并且还能和其他ControlNet一起使用。模型卡
- 如何在Mac电脑上本地部署Stable Diffusion:详细教程(webUI)
玩AI的小胡子
macosstablediffusionAIGC
StableDiffusion是一款强大的AI生成图像模型,它可以基于文本描述生成高质量的图像。对于想要在本地运行此模型的用户来说,使用Mac电脑部署StableDiffusion是一个非常吸引人的选择,特别是对于M1或M2芯片的用户。本文将详细介绍如何在Mac上本地部署StableDiffusion,包括WebUI的设置。一、准备工作1.系统要求•操作系统:macOS12.0(Monterey)
- FFmpeg源码:av_rescale_rnd、av_rescale_q_rnd、av_rescale_q、av_add_stable函数分析
cuijiecheng2018
FFmpeg源码分析ffmpeg
一、av_rescale_rnd函数(一)av_rescale_rnd函数的声明av_rescale_rnd函数声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的头文件libavutil/mathematics.h中:/***Roundingmethods.*/enumAVRounding{AV_ROUND_ZERO=0,///2**av_rescale_rnd(AV_NOP
- Your Diffusion Model is Secretly a Zero-Shot Classifier论文阅读笔记
Rising_Flashlight
论文阅读笔记计算机视觉
YourDiffusionModelisSecretlyaZero-ShotClassifier论文阅读笔记这篇文章我感觉在智源大会上听到无数个大佬讨论,包括OpenAISora团队负责人,谢赛宁,好像还有杨植麟。虽然这个文章好像似乎被引量不是特别高,但是和AI甚至人类理解很本质的问题很相关,即是不是要通过生成来构建理解的问题,文章的做法也很巧妙,感觉是一些学者灵机一动的产物,好好学习一个!摘要这
- Redis入门篇 - CentOS 7下载、安装Redis实操演示
ChineHe
Redisrediscentos数据库
文章记录了在CentOS7上,通过源码的形式,下载安装Redis的操作过程进入要安装Redis的目录cd/usr/local下载源码压缩包wgethttps://download.redis.io/redis-stable.tar.gz#不同版本可能地址不同下载完成后,使用ll命令检查,可以看到下载的压缩包:下载完成后,解压下载的压缩包tar-xzvfredis-stable.tar.gz解压完成
- 探索Stable Diffusion:AI在艺术创作中的无限可能
master_chenchengg
AI技术探讨AI人工智能AIGC行业分析
探索StableDiffusion:AI在艺术创作中的无限可能引言一、StableDiffusion简介定义与历史技术原理概述二、工作原理深入解析扩散模型基础逆向扩散过程详解潜空间与变分自编码器(VAE)U-Net架构的作用三、StableDiffusion与艺术创作的融合创作自由度的提升个性化风格的实现跨媒介艺术的可能性四、案例研究艺术家应用StableDiffusion的实例与传统艺术形式的对
- Stable Diffusion
Covirtue
人工智能pythonstablediffusion
StableDiffusion是一种基于深度学习的文本到图像生成模型,其原理主要基于扩散模型(DiffusionModel)的变体,即潜在扩散模型(LatentDiffusionModel,LDM)。原理一、技术架构与组成StableDiffusion由三个主要部分组成:变分自编码器(VAE)、U-Net和一个文本编码器。变分自编码器(VAE):VAE是一种生成模型,用于将图像压缩到低维的潜在空间
- centos离线安装docker,docker-compose
程序人生518
centosdockerlinux
安装环境操作系统:Centos7.99内核版本:3.10.0-1160.el7.x86_64安装用户:rootdocker离线安装1下载压缩包官网下载地址:https://download.docker.com/linux/static/stable/x86_64/这里默认选择最新版本(26.0.2)。2上传压缩包并解压tarzxvftarzxvfdocker-26.0.2.tgz3配置docke
- [sklearn] 分类指标解惑
PigeonGuan
sklearn分类人工智能
首先查看metrics官方文档:https://scikit-learn.org/stable/api/sklearn.metrics.htmlweighted/macro/micro/samples的区别weighted和samplesweighted这个参数在roc_auc_score函数中,其实就是考虑了trueinstance的情况(也就是需要传一个sample_weights的参数?)。
- 5分钟 Stable Diffusion 本地安装
狒狒伯尼
stablediffusion
StableDiffusion是一种强大的文本到图像生成模型,由于其开源特性,用户可以在本地计算机上进行安装和使用。下面是一个精简的5分钟快速指南,帮助您在本地安装StableDiffusion。为了确保顺利操作,您需要具备一定的计算机基础知识,并预先安装Python和Git。安装前的准备确保系统要求:您需要一台安装了NVIDIA显卡的计算机(最好支持CUDA,至少6GB显存)。操作系统:Wind
- Django Channels 实现 websocket 通讯
郭大帅
PythonDjangopython
官方文档如下:https://channels.readthedocs.io/en/stable/introduction.htmlChannels改变Django在下面和通过Django的同步核心编织异步代码,允许Django项目不仅处理HTTP,还需要处理需要长时间连接的协议-WebSockets,MQTT,chatbots,业余无线电等等。它在保留Django同步和易用性的同时实现了这一点,
- Stable Diffusion快速安装及prompt的使用
老童聊AI
老童陪你学AIpythonstablediffusion
StableDiffusion是一种基于深度学习的文本到图像生成技术,它可以生成高质量的图像。以下是一篇快速安装教程,适合初学者理解和操作。什么是StableDiffusion?StableDiffusion是一种AI模型,它能够根据用户输入的文本描述生成相应的图像。这项技术在艺术创作、游戏设计、广告制作等领域有着广泛的应用。系统要求在开始安装之前,请确保你的计算机满足以下基本要求:操作系统:Wi
- 5分钟 Stable Diffusion 本地安装
Python老吕
Python老吕笔记stablediffusionStableDiffusionDiffusion安装Diffusion本地安装Stable安装Stable本地安装
5分钟StableDiffusion本地安装5分钟StableDiffusion本地安装1.引言1.1什么是StableDiffusion?1.2本地安装的优势2.准备工作2.1系统要求2.2推荐硬件配置2.3软件依赖3.安装步骤3.1下载StableDiffusion3.2安装Python环境3.3安装必要的Python库3.4配置环境变量(如适用)4.运行StableDiffusion4.1启
- Mac系统安装redis
bcqkdt
1下载redis:网址:https://redis.io/download,下载stable版本,稳定版本。2解压:tarzxvfredis-5.0.4.tar.gz。3将解压后文件夹放到/usr/localmvredis-5.0.4/usr/local/(这里可能会有usr/local目录的写入权限问题,参考:https://www.jianshu.com/p/a32224a38195)4切换到
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- 【Stable Diffusion】:原理、应用与未来展望
Python小原
stablediffusion人工智能深度学习
一、引言在人工智能的快速发展中,StableDiffusion作为一种先进的随机过程模型,受到了广泛的关注。StableDiffusion不仅能够描述许多自然和人工系统中的随机演化行为,而且在多个领域展现出了广泛的应用潜力。本文将详细介绍StableDiffusion的原理、应用以及未来的发展趋势。二、StableDiffusion的原理StableDiffusion可以被定义为一个基于随机漫步的
- AIGC:Kolors: Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis
微风❤水墨
AIGC
代码:GitHub-Kwai-Kolors/Kolors:KolorsTeam论文:Kolors/imgs/Kolors_paper.pdfatmaster·Kwai-Kolors/Kolors·GitHub模型:huaggingface:https://huggingface.co/Kwai-Kolors/Kolors-diffusersmodelscope:https://modelscope
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓