- 【AI Agent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(2)- 整体流程解析中再看多智能体消息交互通路
同学小张
大模型游戏笔记人工智能AIGCMetaGPTAIAgent多智能体
大家好,我是同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。本文来学习一下MetaGPT的一个实战案例-狼人杀游戏,该案例源码已经在MetaGPTGitHub开源代码中可以看到。上次我们拆解了该游戏的整体实现框架(【AIAgent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(1)-整体框架解析),本文我们从运行流程的
- 什么是GPT-4T?
亿只小灿灿
人工智能GPT-4T
1.引言:GPT-4T概述GPT-4T是OpenAI开发的新一代多模态大型语言模型,在GPT-4的基础上增强了对表格数据、数学表达式和代码的处理能力。其核心创新在于Transformer架构的优化,使模型能够更高效地处理结构化数据与文本的融合任务。本文将深入探讨GPT-4T的技术原理、应用场景及代码实现。2.GPT-4T核心技术解析2.1多模态输入处理GPT-4T支持三种主要输入模态:自然语言文本
- Secs/Gem第十二讲(基于secs4net项目的ChatGpt介绍)
好,那我们进入最关键的一讲——第十二讲:完整事件通知流程全景图——CEID触发到主机接收的全过程关键词:CEID事件上报、S6F11报文、事件触发流程、数据驱动机制、ReportDispatch、主机解析流程本讲目标你将彻底理解:设备是如何触发一个事件上报的?报文(S6F11)结构是怎么设计的?主机是怎么解析报文、提取变量、派发处理?报文中包含的信息是怎么匹配你之前定义的CEID/RPTID/VI
- 关于 SECS4NET 专栏的几点说明(内附资源)
好学近乎知o
secs/gemsecs4net
关于SECS4NET专栏的几点说明根据很多小伙伴在评论区的留言,我总结了几个反馈点:✅常见问题反馈部分章节讲解存在个别错误关于资源来源、项目版本的问题更新速度偏慢,期待能加快节奏简单说明一下:我是一个没有感情的复制粘贴机器,发布这些作品最初只是为了自己闲来学习、顺便看着玩。起初我以为这种纯纯的复制粘贴内容,甚至连开头和结尾都带着ChatGPT的沟通痕迹,肯定不会有人感兴趣。但没想到,发布之后阅读量
- Secs/Gem第二讲 (基于secs4net项目的ChatGpt介绍)
好的,我们正式进入:第二讲:深入SECS4NET项目结构——主机程序是怎么搭起来的?关键词:项目结构、类图、通信类、事件处理、连接生命周期、异步机制本讲目的我们从源码入手,一步步搞懂:SECS4NET主机(Host)是如何设计通信逻辑的有哪些关键类,类之间的关系是什么通信的生命周期怎么管理怎么实现“接收消息”和“主动发送”的功能如何集成到你自己的EAP或测试程序中你将不再只是“调Sample”,而
- Secs/Gem第一讲(基于secs4net项目的ChatGpt介绍)
好学近乎知o
c#secs/gem
后续内容为基于github上secs4net项目源码的ChatGpt介绍以该项目为主,从零开始介绍讲解secs/gem,更多的以面试口吻讲述形式。主要为个人学习,提升使用第一讲:SECS/GEM协议是个什么东西?第1段:SECS/GEM是谁?它在哪些场合出现?️口述稿(你面试时可以这样说):SECS/GEM协议是半导体行业的通信标准,它解决的是“设备”和“主机系统”之间如何说话、怎么互相理解命令和
- 解决pip指令超时问题
好学近乎知o
pippython
用pip指令,在安装Django3.2时报错,询问ChatGpt后得到的解决方案pip下载超时——是当前网络连接到PyPI官方源太慢或不稳定,甚至可能连不上了,而pip默认的超时时间又太短,就导致了中途失败:ReadTimeoutError:HTTPSConnectionPool(host='files.pythonhosted.org',port=443):Readtimedout.解决方案:换
- 客服系统本地部署对接fastgpt 以及现有业务系统
adminwolf
个人开发
在日常的用户咨询中,许多用户会问我们的系统或浏览器插件能否直接接入Deepseek。其实,这种说法存在一定的不准确之处。正确的理解是,我们需要接入的是支持Deepseek的AI知识库平台,而非直接接入Deepseek本身,而且这些平台通常都支持多种大模型切换。下面,就为大家详细介绍相关的接入方式。我们网站:gofly.v1kf.com一、扣子智能体平台对于非技术人员来说,现在建议直接使用coze.
- GPT-3 面试题
简介1、GPT-3是什么?它是基于什么模型的?GPT-3是一种基于深度学习原理的语言预测模型。它是由OpenAI开发的,可以从互联网数据中生成任何类型的文本。它只需要一小段文本作为输入,就可以生成大量的准确和复杂的机器生成文本²⁴。GPT-3是基于Transformer模型的,使用了仅有解码器的自回归架构。它使用下一个单词预测目标进行训练¹²。GPT-3有8个不同的模型,参数从1.25亿到1750
- gpt面试题
任小栗
#面试题gptvue.js前端
vue面试题一、响应式系统相关❓1.Vue3的响应式系统是如何实现的?和Vue2有何本质区别?答案:Vue3使用Proxy实现响应式(位于@vue/reactivity模块),替代Vue2的Object.defineProperty。核心机制如下:使用targetMap:WeakMap存储依赖关系利用track()和trigger()方法实现依赖收集与派发更新effect()包装副作用函数,自动收
- 编译源代码形式的CVE为二进制.o文件需要先使用GPT补全
Che_Che_
网络二进制代码相似度
#include#include#include#defineVLC_EGENERIC-1#defineVLC_SUCCESS0#defineMMS_BUFFER_SIZE1024//定义access_sys结构体typedefstruct{charbuffer_tcp[MMS_BUFFER_SIZE];//存储TCP数据的缓冲区inti_buffer_tcp;//缓冲区大小inti_comman
- ChatGPT如何实现文字分类?精选案例和最佳实践
山城程序员
ChatGPT是一种预训练语言模型,通常用于生成自然语言文本。但是,在将其应用于分类任务时,它也可以表现出色。本文将介绍如何使用ChatGPT实现文本分类,并提供实践步骤和示例代码。1.数据准备在进行文本分类之前,您需要选择一个合适的数据集并对其进行清理和预处理。确保您的数据集包含带有标签的文本数据。例如,您可能拥有一些产品评论,并且需要将它们分类为积极或消极。以下是一个示例代码,演示如何加载数据
- ChatGPT爆火,未来什么工作不会被取代?
经纬成长说
ChatGPT火了,你肯定也关注到了,最近全网都是它的消息。话题一路从“ChatGPT是什么”、“ChatGPT原理和技术有多强”,到“哪些工作会被ChatGPT取代”。很多人担忧,自己的工作会被取代;甚至企业大佬都纷纷表示,搭不上ChatGPT,终会被淘汰。担忧是有道理的。那未来,什么样的工作不会被AI取代呢?两个维度。第一,可以处理极端复杂的事情。比如商业决策、文稿判断、标题选择、编辑对于美感
- LangChain4j入门:Java开发者的AI应用开发指南
半夜偷你家裤衩子
LangChain4jjava人工智能开发语言LangChain4j
在AI浪潮席卷全球的今天,Java开发者如何快速上手大语言模型应用开发?LangChain4j为我们提供了完美的解决方案!前言:为什么Java开发者需要LangChain4j?想象一下,你正在开发一个企业级应用,需要集成ChatGPT来提供智能客服功能。传统方式需要直接调用OpenAIAPI,处理复杂的HTTP请求、错误重试、上下文管理等问题。而使用LangChain4j,几行代码就能搞定:Cha
- MetaGPT源码剖析(一):MetaGPT框架下的多智能体协作项目——software_company.py
ATM006
开源Agent框架机器智能人工智能大模型源码剖析AgentMetaGPT
每一篇文章都短小精悍,不啰嗦。software_company.py这段代码是一个基于Typer构建的命令行工具,用于启动MetaGPT框架下的多智能体协作项目(比如生成软件项目、完成开发任务等)。它就像一个"项目启动器",允许用户通过命令行参数配置项目需求、资源投入等,进而调度不同角色的智能体(如产品经理、架构师、工程师等)协同工作。一、代码整体功能与定位从架构视角看,这段代码是MetaGPT框
- *SFT深度实践指南:从数据构建到模型部署的全流程解析
大千AI助手
人工智能Python#OTHER人工智能深度学习算法大模型SFT微调Lora
一、SFT技术原理与定位核心定义SFT是在预训练语言模型(如LLaMA、GPT)基础上,利用标注数据优化模型以适应特定任务的技术。其本质是通过调整模型参数,将通用语言能力迁移至专业领域(如法律、医疗)或任务(如对话生成、代码补全)。与预训练的区别预训练:使用无标注数据(如维基百科)学习通用表征,消耗千亿级token算力。SFT:使用标注数据(如指令-答案对)进行任务适配,成本仅为预训练的1/100
- 对标ChatGPT,「文心一言」今日亮相!AI人机时代来临,未来在何方?
AI医学
本文由「AI医学er」提供医海无涯,AI同舟。关注我们,助力高效科研。3月15日,OpenAI公布了其大型语言模型的最新版本——GPT-4。3月16日,百度文心一言人工智能聊天机器人正式上线。一个时代开始了。OpenAI在官网表示,GPT-4是一个能接受图像和文本输入,并输出文本的多模态模型,是OpenAI在扩展深度学习方面的最新成果。此前的ChatGPT,只能通过向其输入文字提问才能生成文字回答
- ChatGPT 与 AIGC 简问乱答
MatrixOnEarth
ChatGPT与AIGC简问乱答**仅代表个人观点。**[Q1]ChatGPT最近非常火爆,2个月突破1亿月活,从产品形态来看,我们知道的微软、谷歌的搜索引擎都会嵌入。那么我们如何看待它的用户粘性,真的会有那么多人持续使用吗还是说只是一阵热潮?[A1]首先,工业界长久以来对搜索引擎的最终产品形态的定义是:信息问答助理。目前的信息检索黄页的产品形态个人认为其实是在技术发展未能满足最终产品形态目标的情
- 【AI论文】EmbRACE-3K: 复杂环境中的具身推理与行为研究
摘要:近期先进的视觉语言模型(Vision-LanguageModels,VLMs)在被动、离线的图像和视频理解任务中展现出了卓越的性能。然而,在具身场景中,这些模型的有效性仍较为有限。具身场景要求在线交互和主动的场景理解,在此类场景中,智能体以第一人称视角感知环境,且每一次动作都会动态地影响后续的观察结果。即便是像GPT-4o、Claude3.5Sonnet和Gemini2.5Pro这样的先进模
- 6、LangChain —— 使用 Huggingface 中的开源模型
Miyazaki_Hayao
LangChain实战langchain
文章目录一、概述二、大语言模型发展史三、预训练+微调的模式四、用HuggingFace跑开源模型五、申请使用Meta的Llama2模型六、通过HuggingFace调用Llama七、LangChain和HuggingFace的接口1、通过HuggingFaceHub2、通过HuggingFacePipeline八、用LangChain调用自定义语言模型一、概述 大语言模型,不止ChatGPT一种。
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 谷歌搜索的 AI 防守战,透露了什么新趋势?
在美的苦命程序员
人工智能
在AI搜索这一轮激烈竞逐中,谷歌这位“搜索一哥”正面临新旧对手的夹击:ChatGPT、Perplexity、Claude、Gemini……每一个看上去都野心勃勃、来势汹汹。但即便如此,数据显示,谷歌在全球搜索领域依然维持了89.5%的市场份额,网络访问量环比小幅增长1%。Gemini的月度用户增长更是达到了27%。这不仅是一场份额保卫战,更是谷歌对“搜索形态重塑”的深度试验。透过这场战役,我们也可
- 【慢工社—学术篇】如何使用 ChatGPT 撰写文献综述(二)
取不好名字=
慢工社-学术篇chatgpt学习方法程序人生人工智能AI写作
慢工社的来历:有没有发现,现在我们像在给AI打工?我们为AI提供基础信息,各种材料,期盼着AI能给我们一些有效的内容作为“薪水”。在这样的付出收获视角下,俗语“慢工才能出细活”简直形容的不能再贴切了。如何使用ChatGPT撰写文献综述?(二)在第一篇内容中,我们介绍了G老师在学术写作上的主要局限以及一些在G老师帮助下写综述的主要过程,最后附上了一些认为会常用到的“咒语”。【慢工社—学术篇】如何使用
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- 《从零构建大模型》系列(21):从头实现GPT模型——构建文本生成引擎
本文将带你从零构建类GPT模型:通过实现层归一化、前馈网络和Transformer块等核心组件,打造一个完整的文本生成模型架构,为后续训练奠定基础。目录一、GPT模型架构全景图1.1模型组件分解1.2GPT-2模型规格二、层归一化实现2.1为什么需要层归一化?2.2层归一化实现代码三、前馈神经网络实现3.1GPT中的前馈结构编辑3.2GELU激活函数3.3完整前馈网络实现四、Transformer
- 大模型聊天模板
文章目录何为聊天模板聊天模板具体长什么样为什么会出现聊天模板何为聊天模板相信大多数本地离线使用过(特别是训练或微调过)LLM、VLM的人知道“Chattemplate/聊天模板”这个概念,但可能并没有对其有较多的了解。本文主要整合网络收集的知识,结合少数使用“聊天模板”的经验对其进行简要说明,希望可以帮助到大家。如果了解Alpaca、ShareGPT等数据集会知道,数据集都是结构化形式,其中会有各
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- GPT-4o mini TTS:领先的文本转语音技术
桂花饼
AIGCGPT-4oo4-mini语音识别人工智能GPT-4o
什么是GPT-4ominiTTS?GPT-4ominiTTS是OpenAI推出的全新一代文本转语音(TTS)技术,能够以自然、流畅的方式将普通文本转换为语音。依托先进的神经网络架构,GPT-4ominiTTS在语音合成中避免了传统TTS的生硬与机械感,能够生成富有情感和个性化表达的高质量语音。该技术支持多语言与多口音,是视频、播客、电子学习等场景的理想选择。核心特点自然流畅,接近真人GPT-4om
- 【农业模型】GPT地学领域应用、AquaCrop、R贝叶斯生态、Copula函数、DSSAT、APSIM、WOFOST、DNDC、CERRES、SWACRO、RZWQM、POTATO、SOLANUM
weixin_贾
遥感数据与作物模型地理遥感生态模型ChatGPT4/DeepSeekgptr语言无人机经验分享
农业模型依据研究对象分为农业生物模型、农业环境模型、农业技术模型、农业经济模型作物模型,即作物生长模拟模型(或称作物生长模型),是从系统科学的角度,基于作物生理过程机制,将气候、土壤、作物品种和管理措施等对作物生长的影响因素作为一个整体系统的数值模拟系统。能够以特定时间步长对作物在单点尺度上生长发育的生物学参数以及作物产量进行动态模拟,定量化研究环境因子以及田间管理措施对作物生长发育的影响。通用型
- 算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录推荐算法系统系列二算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南更多技术内容总结推荐算法系统系列二算
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep