Windows下CUDA版opencv部署yolov5

1、CUDA版opencv编译

参考:Win10下CUDA版OpenCV的编译过程_opencv编译cuda_zhoukehu91的博客-CSDN博客

2、opencv部署yolov5代码

#include 
#include 
#include 

std::vector load_class_list(std::string class_names_path)
{
    std::vector class_list;
    std::ifstream ifs(class_names_path);
    std::string line;
    while (getline(ifs, line))
    {
        class_list.push_back(line);
    }
    return class_list;
}

void load_net(cv::dnn::Net& net, bool is_cuda, std::string onnx_model_path)
{
    auto result = cv::dnn::readNet(onnx_model_path);
    if (is_cuda)
    {
        std::cout << "Attempty to use CUDA\n";
        result.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
        result.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA_FP16);
    }
    else
    {
        std::cout << "Running on CPU\n";
        result.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
        result.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
    }
    net = result;
}

const std::vector colors = { cv::Scalar(255, 255, 0), cv::Scalar(0, 255, 0), cv::Scalar(0, 255, 255), cv::Scalar(255, 0, 0) };

const float INPUT_WIDTH = 640.0;
const float INPUT_HEIGHT = 640.0;
const float SCORE_THRESHOLD = 0.2;
const float NMS_THRESHOLD = 0.4;
const float CONFIDENCE_THRESHOLD = 0.4;

struct Detection
{
    int class_id;
    float confidence;
    cv::Rect box;
};

cv::Mat format_yolov5(const cv::Mat& source) {
    int col = source.cols;
    int row = source.rows;
    int _max = MAX(col, row);
    cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
    source.copyTo(result(cv::Rect(0, 0, col, row)));
    return result;
}

void detect(cv::Mat& image, cv::dnn::Net& net, std::vector& output, const std::vector& className) {
    cv::Mat blob;
    auto input_image = format_yolov5(image);
    cv::dnn::blobFromImage(input_image, blob, 1. / 255., cv::Size(INPUT_WIDTH, INPUT_HEIGHT), cv::Scalar(), true, false);
    net.setInput(blob);

    auto start = std::chrono::high_resolution_clock::now();
    std::vector outputs;
    net.forward(outputs, net.getUnconnectedOutLayersNames());
    auto end = std::chrono::high_resolution_clock::now();
    int time = std::chrono::duration_cast(end - start).count();
    std::cout << "time: " << time << std::endl;

    float x_factor = input_image.cols / INPUT_WIDTH;
    float y_factor = input_image.rows / INPUT_HEIGHT;

    float* data = (float*)outputs[0].data;
    int dimensions = className.size() + 5;
    std::vector class_ids;
    std::vector confidences;
    std::vector boxes;

    for (int i = 0; i < 25200; ++i) {
        float confidence = data[4];
        if (confidence >= CONFIDENCE_THRESHOLD) {
            float* classes_scores = data + 5;
            cv::Mat scores(1, className.size(), CV_32FC1, classes_scores);
            cv::Point class_id;
            double max_class_score;
            minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
            if (max_class_score > SCORE_THRESHOLD) {
                confidences.push_back(confidence);
                class_ids.push_back(class_id.x);
                float x = data[0];
                float y = data[1];
                float w = data[2];
                float h = data[3];
                int left = int((x - 0.5 * w) * x_factor);
                int top = int((y - 0.5 * h) * y_factor);
                int width = int(w * x_factor);
                int height = int(h * y_factor);
                boxes.push_back(cv::Rect(left, top, width, height));
            }
        }
        data += dimensions;
    }

    std::vector nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, SCORE_THRESHOLD, NMS_THRESHOLD, nms_result);
    for (int i = 0; i < nms_result.size(); i++) {
        int idx = nms_result[i];
        Detection result;
        result.class_id = class_ids[idx];
        result.confidence = confidences[idx];
        result.box = boxes[idx];
        output.push_back(result);
    }
}

int main()
{
    std::string class_names_path = "G:\\CUDA2023\\test\\classes.txt";
    std::string onnx_model_path = "G:\\CUDA2023\\test\\yolov5s.onnx";
    std::string input_image_path = "G:\\CUDA2023\\test\\car.jpg";
    bool is_cuda = false;

    std::vector class_list = load_class_list(class_names_path);
    cv::Mat frame = cv::imread(input_image_path);
    cv::dnn::Net net;
    load_net(net, is_cuda, onnx_model_path);

    std::vector output;
    detect(frame, net, output, class_list);

    for (int i = 0; i < output.size(); ++i)
    {
        auto detection = output[i];
        auto box = detection.box;
        auto classId = detection.class_id;
        const auto color = colors[classId % colors.size()];
        cv::rectangle(frame, box, color, 3);
        cv::rectangle(frame, cv::Point(box.x, box.y - 20), cv::Point(box.x + box.width, box.y), color, cv::FILLED);
        cv::putText(frame, class_list[classId].c_str(), cv::Point(box.x, box.y - 5), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
    }

    cv::imshow("output", frame);
    cv::waitKey(0);

    return 0;
}

你可能感兴趣的:(CUDA,opencv,YOLO)