计算工作是不可能一个科学家搞出来的,注定是一群科学家协同工作,
给每一个科学家配上电脑,那么科学家之间的电脑也是协同工作的
人只要用计算机,计算机就必须要协同
古代打仗,每个士兵都有自己的武器(刀、枪、剑等),但士兵之间不是互相孤立的,而是互相协同的刀与枪配合、枪与剑配合
各个计算机之间是独立的
将小松计算后的数据拷贝到软盘中 交给小竹
将小竹计算后的数据拷贝到软盘中 交给小梅
但是人参与的工作,效率会非常低
所以为了提高效率,将所有的机器简单连接起来
这样就可以在自己的电脑上看见所有人的数据
协议是一种约定
在之前打电话要花钱,接电话是不需要花钱的
假设你的手机里只有 20 30块话费,因为花费很少所以避免自己打电话
所以你在向家里打电话时
若响一声就挂掉,说明给家里报平安
若响两声才挂掉,说明你没钱了,该打钱了
若响三声才挂掉,说明是其他特殊事情
将约定做好,相隔几百里,通过曾经约定好的事情 快速形成共识 做出约定的动作,被称为协议
协议本质是为了提高协同效率
两台计算机是人的意志的表达,因为引进网络,就注定计算机之间的距离比较久,
所以两台计算机在技术层面上用特定的方式来做好 双方通信时候的协议约定
网络通信时,会有那些需求要解决,要有那些问题会产生,为什么会产生问题?
1. 长距离传送时,信号会衰减,所以数据有可能异常(数据丢失)
要发送的机器是在远端的,网络上的机器有很多
如何能够将机器数据发送后准确找到网络当中其中一台机器
2.定位一台主机的问题
因为网络太长了,所以要经历中间节点
就会导致
3. 怎么进行数据转发以及路径选择的问题
只有定位一台主机,才能开始传输数据,以及路径选择
如:明确自己要考研,才会好好学习
所以在设计时,将不同的功能模块设计成为不同的模块
可以将解决方案 设计为层状结构(每一层解决相同的问题,层与层之间没有直接关联)
假设你和你的朋友,分别在两个不同的楼内,你使用你宿舍的台式机给你朋友宿舍的台式机打电话
在打电话这个过程中,你认为你和你的朋友在进行直接通信
实际上是 你把话说给了你的台式机,通过电话协议,将信息传递给另一个台式机,此时你朋友的台式机把收到的数据进行协议解析,把声音播放到你朋友的耳边
所以分为语言层和通信设备层,在逻辑上认为都在和对方层进行通信
层和层之间通过接口的方式来进行互相调用底层的功能
但底层如何实现的,上层并不关心
如:你打电话时,并不关心电话采用的频率是多少
对通信设备层替换
在用手机通信的过程中
虽然底层全部替换掉了,但是上层依旧两个人使用汉语来通信
对语言层替换
在用台式机通信的过程中
两个人把语言从汉语变成了英语,台式机并不会管那么多,台式机依旧是把一个人的数据传给另一个台式机
软件分层后,每一层只关注自己同层的功能,只使用下一层的接口,任何一层出现问题,都不会直接影响另一层
减少后期开发者的成本
OSI (Open System Interconnection) 开放系统互连
七层网络模型称为开放式系统互联参考模型,
是一个逻辑上的定义和规范
分为七层
自底向上为:物理层 数据链路层 网络层 传输层 会话层 表示层 应用层
实际上工程实现时会压缩为 物理层 数据链路层 网络层 传输层 应用层 (会话层 表示层 应用层 看作为应用层)
而一般在研究网络协议栈时,重点谈软件,物理层是有关于网络通信硬件的,所以物理层不考虑
采用的网络协议栈为 TCP/IP五层(或四层)模型,TCP/IP脱胎于OSI七层模型,将会话层 表示层 应用层 看作为应用层
五层:物理层 数据链路层 网络层 传输层 应用层
四层: 数据链路层 网络层 传输层 应用层
物理层: 负责光/电信号的传递方式. 比如现在以太网通用的网线(双绞 线)、早期以太网采用的的同轴电缆
(现在主要用于有线电视)、光纤, 现在的wifi无线网使用电磁波等都属于物理层的概念。物理层的能力决
定了最大传输速率、传输距离、抗干扰性等. 集线器(Hub)工作在物理层.
数据链路层: 负责设备之间的数据帧的传送和识别. 例如网卡设备的驱动、帧同步(就是说从网线上检测
到什么信号算作新帧的开始)、冲突检测(如果检测到冲突就自动重发)、数据差错校验等工作. 有以太网、令牌环网, 无线LAN等标准. 交换机(Switch)工作在数据链路层.
(如:有个小朋友,能够说出简单的字段,将信息传给他的爸爸或妈妈
数据链路层的标准是不一样的,因为数据链路层的具体实现是在网卡驱动实现的
最常见的标准是 以太网)
网络层: 负责地址管理和路由选择. 例如在IP协议中, 通过IP地址来标识一台主机, 并通过路由表的方式规
划出两台主机之间的数据传输的线路(路由). 路由器(Router)工作在网路层.
红框为主机的内网私有IP地址
传输层: 负责两台主机之间的数据传输. 如传输控制协议 (TCP), 能够确保数据可靠的从源主机发送到目标
主机.
可靠的把A数据送到B
如:你的老师夸你,数学有考100分的能力,但并不说明你一定能考100,大概率考100,也有可能考99
所以就需要可靠的传输数据
应用层: 负责应用程序间沟通,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问
协议(Telnet)等. 我们的网络编程主要就是针对应用层
同一个局域网的两台机器,可以直接通信
如:假设有一天网比较卡,同一个寝室的室友想要打游戏,所以就打CS构建局域网房间,就可以通过进入房间从而一起玩游戏
两个主机通信的本质是 两个主机的操作系统与网络协议栈在通信
同层的每一层都是一种协议,每层都要有自己的协议
协议的表现形式:协议报头体现出来的
网购:在网店里面买了一个键盘,付款后进行卖家发货,收货后并不仅仅是键盘,收到的是一个包裹,
包裹上有一张纸,有姓名,地点,发货的邮政编码等
你要的就是键盘,实际上给你的除了键盘还多了一张纸
这张纸对于你并不是必须的,但对于快递员是必须的,多出来的这张纸称为报头
报头是工作在快递员那层的,在你看来你把报头去掉了
键盘本身也是包装起来的,键盘要附上使用说明书,使用说明书就会告诉你键盘是什么种类的,键盘如何使用等
说明书也可以作为报头
在物流体系中,不仅仅在物流商品,快递单+商品,才是物流的主体
当想要发 在吗,相当于商品,这个商品想要在网络中正常被转发,工作在不同层级,每一层都必须有对应的协议(表现形式为报头)
每一层协议都要有各自的协议报头,加上有效载荷
如:收到一个包裹,包裹上面的纸称为报头,包裹里的东西称之为有效载荷
当要发送消息时,并不是将消息直接发送给对方,先添加自己应用层的报头,然后将报头与有效载荷交付给下一层
在下一层时,将上一层的报头和有效载荷 整体看作是 该层的有效载荷 ,再次添加报头
所有的数据一定先被硬件收到,因为冯诺依曼体系规定,对于发送方来讲,叫做输出
输入时,一定是主机的硬件先收到,就决定了自底向上收到的
收到后,将要将自己的报头与自己的有效载荷分离
分离后,将有效载荷交 给上一层
如:收到快递后,将包裹拆掉,将里面的东西拿出来
将报头从上到下贯穿,称为封装
将报头自底向上进行交付,称之为解包加分用
解包:将报头和有效载荷分离
分用:将有效载荷交付给上层
协议要支持两个基本功能:
1.报头必须要能和有效载荷分离
2.报头必须支持,将有效载荷交付给上层,被称为数据报分用(分发给上层去用)
每一个同学都有自己的名字,老师大声在教室询问,张三为什么布置的作业没有写,教室内的所有的同学都听到了,
听到后先分析数据,数据包的报头是张三,有效载荷是作业为什么没做
先将报头与有效载荷分离,报头是张三,每个人都知道自己不是张三,所以每个人在数据链路层将消息丢弃了
有一名同学在数据链路层对比时,发现他就是张三
当张三回答老师说,老师,作业已经做完了
张三给老师发数据包,在座的其他同学都能听见
报头为 老师, 有效载荷为 作业已经做完了
此时其他同学在数据链路层将消息丢弃了,老师在数据链路层对比时,发现这名同学就是叫他的
将有效载荷 作业已经做完了,向上交付给老师
在这个过程中,张三认为和老师直接通信,老师也认为和张三直接通信,完成一次信息的交互
这种通信原理就被称为 以太网的局域网的通信原理
在教室内,当上课时,有一个同学一直在说话,扰乱课堂秩序,一般这个时候老师会让这位同学出去
因为这位同学说话时,会干扰老师或者其他同学说话,导致其他人听不清楚
这种情况被称为局域网发生数据碰撞
局域网中,任何时刻,只允许一个人在向局域网发送消息
任何人要通信,需要有唯一的一个标识符,对于机器也是如此,对于计算机,每台计算机都配有网卡
网卡在出厂的时候,就在网卡内部写入网卡的sn号(俗称MAC地址,全球唯一)
(标识符:在教室里,每个人都有唯一的名字)