评估修改后的YOLOv8模型的参数量和速度

评估修改后的YOLOv8模型的参数量和速度_第1张图片

 YOLOv8公布了自己每个模型的速度和参数量

那么如果我们自己对YOLOv8做了一些修改,又怎么样自己写代码统计一下修改后的模型的参数量和速度呢?

其实评估这些东西,大多数情况下不需要我们从头自己写一个函数来评估

一般来说,只要是作者公布的这些分数。作者都会把这些分数的实现代码放在它的代码中。你所需要的仅仅是找到这段代码所在的位置,然后直接调用作者的代码,计算即可。

上述计算要求的diam被放在了了下面这个位置(ultralytircs8.0.40这个版本是这样,其他版本有可能会不同)

\ultralytics\yolo\utils\torch_utils.py line 165

计算参数量的函数

def model_info(model, verbose=False, imgsz=640):
    # Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]
    n_p = get_num_params(model)
    n_g = get_num_gradients(model)  # number gradients
    if verbose:
        print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
        for i, (name, p) in enumerate(model.named_parameters()):
            name = name.replace('module_list.', '')
            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))

    flops = get_flops(model, imgsz)
    fused = ' (fused)' if model.is_fused() else ''
    fs = f', {flops:.1f} GFLOPs' if flops else ''
    m = Path(getattr(model, 'yaml_file', '') or model.yaml.get('yaml_file', '')).stem.replace('yolo', 'YOLO') or 'Model'
    LOGGER.info(f"{m} summary{fused}: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")


def get_num_params(model):
    return sum(x.numel() for x in model.parameters())


def get_num_gradients(model):
    return sum(x.numel() for x in model.parameters() if x.requires_grad)


def get_flops(model, imgsz=640):
    try:
        model = de_parallel(model)
        p = next(model.parameters())
        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32  # max stride
        im = torch.empty((1, p.shape[1], stride, stride), device=p.device)  # input image in BCHW format
        flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2  # stride GFLOPs
        imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz]  # expand if int/float
        flops = flops * imgsz[0] / stride * imgsz[1] / stride  # 640x640 GFLOPs
        return flops
    except Exception:
        return 0

计算速度的函数

line354

def profile(input, ops, n=10, device=None):
    """ YOLOv8 speed/memory/FLOPs profiler
    Usage:
        input = torch.randn(16, 3, 640, 640)
        m1 = lambda x: x * torch.sigmoid(x)
        m2 = nn.SiLU()
        profile(input, [m1, m2], n=100)  # profile over 100 iterations
    """
    results = []
    if not isinstance(device, torch.device):
        device = select_device(device)
    print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
          f"{'input':>24s}{'output':>24s}")

    for x in input if isinstance(input, list) else [input]:
        x = x.to(device)
        x.requires_grad = True
        for m in ops if isinstance(ops, list) else [ops]:
            m = m.to(device) if hasattr(m, 'to') else m  # device
            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
            try:
                flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPs
            except Exception:
                flops = 0

            try:
                for _ in range(n):
                    t[0] = time_sync()
                    y = m(x)
                    t[1] = time_sync()
                    try:
                        _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
                        t[2] = time_sync()
                    except Exception:  # no backward method
                        # print(e)  # for debug
                        t[2] = float('nan')
                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
                s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y))  # shapes
                p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0  # parameters
                print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
                results.append([p, flops, mem, tf, tb, s_in, s_out])
            except Exception as e:
                print(e)
                results.append(None)
            torch.cuda.empty_cache()
    return results

你可能感兴趣的:(YOLO)