给你一个由 '1'
(陆地)和 '0'
(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] 输出:1
示例 2:
输入:grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] 输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
的值为 '0'
或 '1'
class Solution {
public int numIslands(char[][] grid) {
int count = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j = 0 && i < grid.length && j >= 0 && j < grid[0].length && grid[i][j] == '1') {
grid[i][j] = '2';
} else {
return;
}
infect(grid, i - 1, j);
infect(grid, i + 1, j);
infect(grid, i, j - 1);
infect(grid, i, j + 1);
}
}
这道题给我拓展了一个新的解题思路,讨论区大佬起名为“感染函数”,遍历检测到1时就进入感染函数将这个1能连接到的所有1(包括它本身)都变为2,这样:0代表水,1代表未遍历过的陆地,2代表已经遍历过的陆地。那么就可以做到当到达一个未曾来到过的岛屿时,我们把这片岛屿的陆地全部遍历一遍,那么之后就算再次来到这片岛屿的陆地,也不会错把岛屿数量增加。