Redis缓存击穿问题以及解决方案

Redis缓存击穿问题以及解决方案

  • 前言
  • 一、什么是Redis缓存击穿
  • 二、解决方案
    • 1.使用锁来解决
      • 使用锁的流程:
      • 核心思路:
      • 思路流程图:
      • 操作的锁的代码:
      • 业务的实现:
    • 2.逻辑过期来解决
      • 思路分析:
      • 解决流程:
      • 业务实现:


前言

跟随黑马视频虎哥学习redis:

这是我认为b站上最好的redis教程,各方面讲解透彻,知识点覆盖比较全。
黑马redis视频链接:B站黑马redis教学视频
本文参考黑马redis课程笔记


一、什么是Redis缓存击穿

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

逻辑分析:
假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

Redis缓存击穿问题以及解决方案_第1张图片

二、解决方案

1.使用锁来解决

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

使用锁的流程:

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。
Redis缓存击穿问题以及解决方案_第2张图片

核心思路:

相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询。

如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

思路流程图:

Redis缓存击穿问题以及解决方案_第3张图片

操作的锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {
	//使用redis的set nx进行分布式锁的获取
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}

业务的实现:

// 实现缓存重构
        //获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockKey);
            //判断否获取成功
            if(!isLock){
                //失败,则休眠重试
                Thread.sleep(50);
                return queryWithMutex(id);
            }
            //成功,根据id查询数据库
             shop = getById(id);
            //不存在,返回错误
            if(shop == null){
                 //将空值写入redis
                stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
                //返回错误信息
                return null;
            }
            //写入redis
            stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);

        }catch (Exception e){
            throw new RuntimeException(e);
        }
        finally {
            //释放互斥锁
            unlock(lockKey);
        }

2.逻辑过期来解决

思路分析:

当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

解决流程:

Redis缓存击穿问题以及解决方案_第4张图片

业务实现:


//定义一个线程池
private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){
    	//开启独立线程去解决:
        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

你可能感兴趣的:(java,redis,java,后端,spring,boot)