Stable Diffusion Web UI 是一个基于 Stable Diffusion 的基础应用,利用 gradio 模块搭建出交互程序,可以在低代码 GUI 中立即访问 Stable Diffusion
启动界面可以大致分为4个区域【模型】【功能】【参数】【出图】四个区域
1. 模型区域:模型区域用于切换我们需要的模型,模型下载后放置相对路径为/modes/Stable-diffusion目录里面,网上下载的safetensors、ckpt、pt模型文件请放置到上面的路径,模型区域的刷新箭头刷新后可以进行选择。
2. 功能区域:功能区域主要用于我们切换使用对应的功能和我们安装完对应的插件后重新加载UI界面后将添加对应插件的快捷入口在功能区域,功能区常见的功能描述如下
3. 参数区域:根据您选择的功能模块不同,可能需要调整的参数设置也不一样。例如,在文生图模块您可以指定要使用的迭代次数,掩膜概率和图像尺寸等参数配置
4. 出图区域:出图区域是我们看到AI绘图的最终结果,在这个区域我们可以看到绘图使用的相关参数等信息。
txt2img(文生图)
在设置页面中,您可以输入文本,选择模型并配置其他参数。文本是必需的,它将成为图像生成的依据。您可以选择预定义的模型或上传自己的模型。您还可以选择一些其他参数,例如批处理大小,生成的图像尺寸等。下面是一些参数的说明:
Euler a:
i. Euler a是一种用于控制时间步长大小的可调参数,在Stable Diffusion中采用Euler时间步长采样方法。适当的Euler a值能够捕捉到细节和纹理,但如果值太大会导致过度拟合,生成图像出现噪点等不良效果。
ii. 一句话概括:采样生成速度最快,但是如果说在高细节图增加采样步数时,会产生不可控突变(如人物脸扭曲,细节扭曲等)。
适合:ICON,二次元图像,小场景。
DPM++2S a Karras :
i. 采用 DPM++2S a Karras 采样方法生成高质量图像,该方法在每个时间步长中执行多次操作,同等分辨率下细节会更多,比如可以在小图下塞进全身,代价是采样速度更慢。
ii. 适合:写实人像,复杂场景刻画。
DDIM:
i. DDIM 采样方法可以快速生成高质量的图像,相比其他采样方法具有更高的效率,想尝试超高步数时可以使用,随着步数增加可以叠加细节。
Stable Diffusion中的提示词相关性指的是输入提示词对生成图像的影响程度。当我们提高提示词相关性时,生成的图像将更符合提示信息的样子;相反,如果提示词相关性较低,对应的权重也较小,则生成的图像会更加随机。因此,通过调整提示词相关性,可以引导模型生成更符合预期的样本,从而提高生成的样本质量。
i. 在具体应用中,对于人物类的提示词,一般将提示词相关性控制在7-15之间。
ii. 而对于建筑等大场景类的提示词,一般控制在3-7左右。这样可以在一定程度上突出随机性,同时又不会影响生成图像的可视化效果。因此,提示词相关性可以帮助我们通过引导模型生成更符合预期的样本,从而提高生成的样本质量。
i. 随机种子是一个可以锁定生成图像的初始状态的值。当使用相同的随机种子和其他参数,我们可以生成完全相同的图像。设置随机种子可以增加模型的可比性和可重复性,同时也可以用于调试和优化模型,以观察不同参数对图像的影响。
ii. 在Stable Diffusion中,常用的随机种子有-1和其他数值。当输入-1或点击旁边的骰子按钮时,生成的图像是完全随机的,没有任何规律可言。而当输入其他随机数值时,就相当于锁定了随机种子对画面的影响,这样每次生成的图像只会有微小的变化。因此,使用随机种子可以控制生成图像的变化程度,从而更好地探索模型的性能和参数的影响。
在工作产出中,如果细微调整,我们将会固定某个种子参数然后进行批量生成。
image2image(图生图)
img2img功能可以让你用stable diffusion web ui生成元画像和似的构图色彩的画像,或者指定一部分内容进行变换。
与text2img相比,img2img新增了缩放模式和重绘幅度(Denoising strength)参数设置