分布式的 CAP 理论告诉我们:
任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。目前很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。基于 CAP理论,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证最终一致性。
在许多的场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。很多时候我们需要保证一个方法在同一时间内只能被同一个线程执行。在单机环境中,通过 Java 提供的并发 API 我们可以解决,但是在分布式环境下,就没有那么简单啦。
下面分开介绍一下这些分布式锁的实现原理。
基于数据库的分布式锁, 常用的一种方式是使用表的唯一约束特性。当往数据库中成功插入一条数据时, 代表只获取到锁。将这条数据从数据库中删除,则释放锁。
如何优化数据库锁
适用场景: Mysql分布式锁一般适用于资源不存在数据库,如果数据库存在比如订单,那么可以直接对这条数据加行锁,不需要我们上面多的繁琐的步骤,比如一个订单,那么我们可以用select * from order_table where id = 'xxx' for update进行加行锁,那么其他的事务就不能对其进行修改。
优点:理解起来简单,不需要维护额外的第三方中间件(比如Redis,Zk)。
缺点:虽然容易理解但是实现起来较为繁琐,需要自己考虑锁超时,加事务等等。性能局限于数据库,一般对比缓存来说性能较低。对于高并发的场景并不是很适合。
使用redis 的set(String key, String value, String nxxx, String expx, int time)命令
这里有个问题,加锁了之后如果机器宕机那么这个锁就不会得到释放所以会加入过期时间,加入过期时间需要和setNx同一个原子操作,在Redis2.8之前我们需要使用Lua脚本达到我们的目的,但是redis2.8之后redis支持nx和ex操作是同一原子操作。
优点:对于Redis实现简单,性能对比ZK和Mysql较好。如果不需要特别复杂的要求,那么自己就可以利用setNx进行实现,如果自己需要复杂的需求的话那么可以利用或者借鉴Redission。对于一些要求比较严格的场景来说的话可以使用RedLock。
缺点:需要维护Redis集群,如果要实现RedLock那么需要维护更多的集群。
基于zookeeper临时有序节点可以实现的分布式锁。 大致思想即为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。
优点:有效的解决单点问题,不可重入问题,非阻塞问题以及锁无法释放的问题。实现起来较为简单。
缺点:性能上可能并没有缓存服务那么高,因为每次在创建锁和释放锁的过程中,都要动态创建、销毁临时节点来实现锁功能。ZK 中创建和删除节点只能通过 Leader 服务器来执行,然后将数据同步到所有的 Follower 机器上。还需要对 ZK的原理有所了解。
我们想象一个这样的场景当机器A申请到一把锁之后,如果Redis主宕机了,这个时候从机并没有同步到这一把锁,那么机器B再次申请的时候就会再次申请到这把锁,为了解决这个问题Redis作者提出了RedLock红锁的算法,在Redission中也对RedLock进行了实现。
通过上面的代码,我们需要实现多个Redis集群,然后进行红锁的加锁,解锁。具体的步骤如下:
可以看见RedLock基本原理是利用多个Redis集群,用多数的集群加锁成功,减少Redis某个集群出故障,造成分布式锁出现问题的概率。
上面我们介绍过红锁,但是Martin Kleppmann认为其依然不安全。有关于Martin反驳的几点,我认为其实不仅仅局限于RedLock,前面说的算法基本都有这个问题,下面我们来讨论一下这些问题:
client1获取了锁并且设置了锁的超时时间,但是client1之后出现了STW,这个STW时间比较长,导致分布式锁进行了释放,client2获取到了锁,这个时候client1恢复了锁,那么就会出现client1,2同时获取到锁,这个时候分布式锁不安全问题就出现了。这个其实不仅仅局限于RedLock,对于我们的ZK,Mysql一样的有同样的问题。
对于这三个问题,在网上包括Redis作者在内发起了很多讨论。
GC的STW
对于这个问题可以看见基本所有的都会出现问题,Martin给出了一个解法,对于ZK这种他会生成一个自增的序列,那么我们真正进行对资源操作的时候,需要判断当前序列是否是最新,有点类似于我们乐观锁。当然这个解法Redis作者进行了反驳,你既然都能生成一个自增的序列了那么你完全不需要加锁了,也就是可以按照类似于Mysql乐观锁的解法去做。
我自己认为这种解法增加了复杂性,当我们对资源操作的时候需要增加判断序列号是否是最新,无论用什么判断方法都会增加复杂度,后面会介绍谷歌的Chubby提出了一个更好的方案。
时钟发生跳跃
Martin觉得RedLock不安全很大的原因也是因为时钟的跳跃,因为锁过期强依赖于时间,但是ZK不需要依赖时间,依赖每个节点的Session。Redis作者也给出了解答:对于时间跳跃分为人为调整和NTP自动调整。
长时间的网络I/O
这一块不是他们讨论的重点,我自己觉得,对于这个问题的优化可以控制网络调用的超时时间,把所有网络调用的超时时间相加,那么我们锁过期时间其实应该大于这个时间,当然也可以通过优化网络调用比如串行改成并行,异步化等。可以参考我的两个文章: 并行化-你的高并发大杀器,异步化-你的高并发大杀器
Redission
Javaer都知道Jedis,Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持。Redission也是Redis的客户端,相比于Jedis功能简单。Jedis简单使用阻塞的I/O和redis交互,Redission通过Netty支持非阻塞I/O。Jedis最新版本2.9.0是2016年的快3年了没有更新,而Redission最新版本是2018.10月更新。
参考:
再有人问你分布式锁,这篇文章扔给他 - 掘金
分布式锁看这篇就够了 - 知乎