代码随想录算法训练营day50

文章目录

  • Day50
    • 买卖股票的最佳时机III
      • 题目
      • 思路
      • 代码
    • 买卖股票的最佳时机IV
      • 题目
      • 思路
      • 代码

Day50

买卖股票的最佳时机III

123. 买卖股票的最佳时机 III - 力扣(LeetCode)

题目

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:
  • 输入:prices = [3,3,5,0,0,3,1,4]
  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。
  • 示例 2:
  • 输入:prices = [1,2,3,4,5]
  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
  • 示例 3:
  • 输入:prices = [7,6,4,3,1]
  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。
  • 示例 4:
  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^5

思路

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  • 确定dp数组以及下标的含义

一天一共就有五个状态,

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

  • 确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  • 确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  • 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uQGYxhbp-1690892612962)(https://code-thinking-1253855093.file.myqcloud.com/pics/20201228181724295-20230310134201291.png “123.买卖股票的最佳时机III”)]

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

代码

class Solution {
    public int maxProfit(int[] prices) {
        int dp[][] = new int[prices.length][5];
        // 0 没有操作, 1 第一次持有股票, 2 第一次不持有股票, 3 第二次持有股票, 4 第二次不持有股票
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[0][2] = 0;
        dp[0][3] = -prices[0];
        dp[0][4] = 0;

        for(int i = 1; i < prices.length; i++){
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.length - 1][4];
    }
}

买卖股票的最佳时机IV

188. 买卖股票的最佳时机 IV - 力扣(LeetCode)

题目

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:
  • 输入:k = 2, prices = [2,4,1]
  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。
  • 示例 2:
  • 输入:k = 2, prices = [3,2,6,5,0,3]
  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100
  • 0 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

思路

动规五部曲,分析如下:

  • 确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III (opens new window)中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

  • 确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])


for(int j = 0; j < 2 * k - 1; j += 2){
	// 持有股票的状态
	dp[i][j + 1] = Math.max(dp[i - 1][j] - prices[i], dp[i - 1][j + 1]);
	// 不持有股票的状态
	dp[i][j + 2] = Math.max(dp[i - 1][j + 1] + prices[i], dp[i - 1][j + 2]);
}

本题和动态规划:123.买卖股票的最佳时机III (opens new window)最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

  • dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

for(int i = 0; i < 2 * k - 1; i += 2){
            dp[0][i + 1] = -prices[0];
            dp[0][i + 2] = 0;
        }
  • 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  • 举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hcancYau-1690892612963)(https://code-thinking-1253855093.file.myqcloud.com/pics/20201229100358221.png “188.买卖股票的最佳时机IV”)]

代码

class Solution {
    public int maxProfit(int k, int[] prices) {
        int dp[][] = new int[prices.length][2 * k + 1];
        // 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作
        for(int i = 0; i < 2 * k - 1; i += 2){
            dp[0][i + 1] = -prices[0];
            dp[0][i + 2] = 0;
        }

        for(int i = 1; i < prices.length; i++){
            for(int j = 0; j < 2 * k - 1; j += 2){
                // 持有股票的状态
                dp[i][j + 1] = Math.max(dp[i - 1][j] - prices[i], dp[i - 1][j + 1]);
                // 不持有股票的状态
                dp[i][j + 2] = Math.max(dp[i - 1][j + 1] + prices[i], dp[i - 1][j + 2]);
            }
        }
        return dp[prices.length - 1][2 * k];
    }
}

// 三维 dp数组
class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;

        // [天数][交易次数][是否持有股票]
        int len = prices.length;
        int[][][] dp = new int[len][k + 1][2];
        
        // dp数组初始化
        // 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润
        for (int i = 0; i <= k; i++) {
            dp[0][i][1] = -prices[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 1; j <= k; j++) {
                // dp方程, 0表示不持有/卖出, 1表示持有/买入
                dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
                dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
            }
        }
        return dp[len - 1][k][0];
    }
}

你可能感兴趣的:(算法)