022-Generate Parentheses

Generate Parentheses

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]

利用递归,注意满足的两个条件:左括号一定要大于零,右括号一定要大于零,且大于左括号的数量

class Solution(object):
    def generateParenthesis(self, n):
        """
        :type n: int
        :rtype: List[str]
        """

        res=[]  
        tmp=['' for i in range(n+n)]  
        self.generate(res,n,n,tmp,0)  
        return res  
    def generate(self,res,l,r,tmp,index):  
        if l==0 and r==0:  
            res.append(''.join(tmp))  
            return  
        if l>0:  
            tmp[index]='('  
            self.generate(res,l-1,r,tmp,index+1)  
        if r>0 and r>l:  
            tmp[index]=')'  
            self.generate(res,l,r-1,tmp,index+1)  

再来看一个backtrack的方案:

class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        if n == 0: return ['']
        ans = []
        def backtrack(S = '',left = 0, right = 0):
            if len(S) == 2 * n:
                ans.append(S)
                return
            if left < n:
                backtrack(S+'(',left + 1, right)
            if right < left:
                backtrack(S+')',left,right + 1)

        backtrack()
        return ans

和一个dp的方案:

To generate all n-pair parentheses, we can do the following:

Generate one pair: ()

Generate 0 pair inside, n - 1 afterward: () (...)...

Generate 1 pair inside, n - 2 afterward: (()) (...)...

...

Generate n - 1 pair inside, 0 afterward: ((...))

I bet you see the overlapping subproblems here. Here is the code:

(you could see in the code that x represents one j-pair solution and y represents one (i - j - 1) pair solution, and we are taking into account all possible of combinations of them)

class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        dp = [[] for i in range(n + 1)]
        dp[0].append('')
        for i in range(n + 1):
            for j in range(i):
                dp[i] += ['(' + x + ')' + y for x in dp[j] for y in dp[i - j - 1]]
        return dp[n]

看看caikehe的方案:

毫无疑问,这个非常好理解!

class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        res = []
        self.dfs(n, n, "", res)
        return res

    def dfs(self, leftRemain, rightRemain, path, res):
        if leftRemain > rightRemain or leftRemain < 0 or rightRemain < 0:
            return  # backtracking
        if leftRemain == 0 and rightRemain == 0:
            res.append(path)
            return
        self.dfs(leftRemain-1, rightRemain, path+"(", res)
        self.dfs(leftRemain, rightRemain-1, path+")", res)

看看stefan大大的方案:

# Solution 1
#
# I used a few "tricks"... how many can you find? :-)

def generateParenthesis(self, n):
    def generate(p, left, right, parens=[]):
        if left:         generate(p + '(', left-1, right)
        if right > left: generate(p + ')', left, right-1)
        if not right:    parens += p,
        return parens
    return generate('', n, n)
# Solution 2
#
# Here I wrote an actual Python generator. I allow myself to put the yield q at the end of the line because it's not that bad and because in "real life" I use Python 3 where I just say yield from generate(...).

def generateParenthesis(self, n):
    def generate(p, left, right):
        if right >= left >= 0:
            if not right:
                yield p
            for q in generate(p + '(', left-1, right): yield q
            for q in generate(p + ')', left, right-1): yield q
    return list(generate('', n, n))
# Solution 3
#
# Improved version of this. Parameter open tells the number of "already opened" parentheses, and I continue the recursion as long as I still have to open parentheses (n > 0) and I haven't made a mistake yet (open >= 0).

def generateParenthesis(self, n, open=0):
    if n > 0 <= open:
        return ['(' + p for p in self.generateParenthesis(n-1, open+1)] + \
               [')' + p for p in self.generateParenthesis(n, open-1)]
    return [')' * open] * (not n)

你可能感兴趣的:(022-Generate Parentheses)