- 剑指 Offer 04. 二维数组中的查找
菜菜今天学习了吗
leetcode刷题leetcode算法数据结构
在一个n*m的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。示例:现有矩阵matrix如下:[[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]]给定target=5,返回true
- 大白话解释深度学习中多尺度特征融合及其意义
来自宇宙的曹先生
深度学习人工智能
想象一下,你正在看一幅城市街道的照片。在这张照片中,你可能会看到:远处的小汽车,它们在图像中看起来很小。近处的大巴士,它们在图像中看起来很大。还有一些行人,他们可能在不同的距离上,大小各异。假设你想训练一个计算机程序来识别和分割这些不同的物体(汽车、巴士、行人)。如果这个程序只能在一个固定的尺度上“看”图像,比如说只能处理大物体,它可能会错过那些远处的小汽车,因为这些小汽车在图像中占据的像素很少。
- 面试150 矩阵置0
Alfred king
面试150题目矩阵线性代数leetcode面试数组
思路我们使用两个标记集合,分别记录当矩阵的元素为0的时候的横、纵坐标。然后在对矩阵元素进行遍历,如果所在行或者所在列的索引在集合中,对应的矩阵元素修改为0即可```classSolution:defsetZeroes(self,matrix:List[List[int]])->None:"""Donotreturnanything,modifymatrixin-placeinstead."""ro
- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- Swift 解 LeetCode 321:拼接两个数组中的最大数,贪心 + 合并全解析
文章目录摘要描述题解答案题解代码分析(Swift实现)题解代码详解maxSubArray——单调栈选最大子序列merge——合并两个数组形成最大数枚举所有组合,找最大拼接示例测试及结果示例1示例2示例3时间复杂度分析空间复杂度分析总结摘要想象你有两组数字,每组都像一个“待拼接的号码牌”。你的目标是——从中选出某几个数字,把它们拼成一个尽可能大的数。听起来是不是有点像拼接手机号,或者在广告里比大小?
- 构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析
构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析关键词:模型运行监控、健康度分级体系、DeepSeek、私有化部署、Prometheus、Grafana、异常检测、推理稳定性、性能观测、可视化大屏摘要:在DeepSeek大模型私有化部署的生产环境中,传统的“是否可用”监控已难以满足对模型稳定性、推理质量与异常风险的精细管理需求。为此,企业必须构建一套基于五级健康度模型的全维监控体系
- 汇编语言:基于x86处理器(原书第7版)所有课后习题答案
Up to the mountain
汇编masm
包含3-13章所有习题答案,覆盖率95%以上,除了意义不大和重复的,高难度题目我全做了包含vs2015工程,使用时将对应的习题拖到vs工程的源码底下,一次编译一个,如果莫名报错,请将文件名改成简单英文或数字名,如a31.asm---引用请注明出处---下载地址:汇编语言:基于x86处理器(原书第7版)所有课后习题答案_汇编语言基于x86处理器第七版课后答案-其它文档类资源-CSDN下载
- Spring Boot + 本地部署大模型实现:安全性与可靠性保障
代码老y
springbootbootstrap后端
在将大语言模型集成到SpringBoot应用中时,安全性和可靠性是两个关键因素。本地部署的大模型虽然提供了强大的功能,但也可能带来一些安全风险,如数据泄露、模型被恶意利用等。本文将介绍如何在SpringBoot应用中保障本地部署大模型的安全性和可靠性,确保应用的稳定运行。一、安全性保障(一)数据加密传输加密:确保模型生成的结果在传输过程中被加密,防止数据在传输过程中被窃取。可以使用HTTPS协议来
- java项目报错405_405报错是什么原因_状态码405是什么错误
跳动的数字
java项目报错405
今天网站遇到一个问题:httppost请求网页会出现405,分析了下原因:是因为Apache、IIS、Nginx等绝大多数web服务器,都不允许静态文件响应POST请求。下面是解决方案:将post请求改为get请求XF405/XF400支持拍摄4KUHD(3840x2160)50P影像。采用了一枚1.0型大尺寸影像传感器,该传感器的尺寸约为传统机型传感器的6.8倍。MP4格式的文件可设置为自动继续
- 蓝队应急思路分享
四个月拿下
网络
一、应急响应应急响应的流程如下:1)首先判断服务器资产、影响范围以及严重程度,确认有没有必要将被攻击的服务器下线隔离,然后根据服务器的失陷时间和态势感知的告警,判断是由什么漏洞进来的2)其次就是取证排查阶段,如果是web漏洞,就是查看web日志,根据失陷时间节点往上排查是否上传webshell;再查看后门是否有恶意的命令执行、文件上传。如果有恶意的文件比如说.exe,可以放到一些微步社区平台分析;
- 存储延时数据,帮你选数据库和缓存架构
呢喃coding
系统架构设计架构
1.理解存储媒介量化延时类别描述延时缓存/内存L1cachereference1ns缓存/内存L2cachereference4ns缓存/内存Mainmemoryreference(DDR4,5-10ns为补充说明)100ns网络传输SendpacketCA->Netherlands->CA150,000,000ns(150ms)磁盘存储HDD(HardDiskDrive)读写1-10ms磁盘存储
- 12.组件的实现原理
青阳流月
vue3前端javascriptvue.js
将一个大的页面分为多个组件,每个组件都可以完成独立的功能并且可以被复用。1.渲染组件从用户角度,是一个描述对象constmyComponent1={name:'myComponent1',data(){return{name:'wjt'}}}从渲染器角度,是一个特殊的虚拟DOMconstmyComponent2={//type:Fragment,//描述片段type:Text,//描述节点prop
- Web-API-day2 间歇函数setInterval与事件监听addEvenListener
码哥DFS
javascript前端
1.间歇函数setInterval(函数,间隔时间)时间单位为毫秒functionfn(){console.log('hello')}letn=setInterval(fn,1000)console.log(n)关闭间歇函数clearInterval(变量名)2.事件监听元素对象.addEvenListener('事件类型',执行函数)事件类型:鼠标事件:click(点击)、mouseenter(
- 全球86%企业已启程:SNP零中断迁移方案护航S/4HANA转型
snpgroupcn
云计算数据仓库运维
目录如何在RISE项目中取得成功全程赋能:SNP为RISE项目打造的六大核心优势1、更快实现价值2、更高的灵活性3、降低成本4、风险可控5、更高的用户接受度3、近乎零中断客户评价实践见证:全球领先企业的成功典范1、IBM2、Pfizer辉瑞3、Coop超越迁移:构建数据驱动型业务的未来在SNP,我们已成功指导数百家企业完成复杂的SAP系统迁移项目。这些经验已融入我们的软件和转型方法论,使您的迁移之
- 护照阅读器在机场的应用广泛
电子护照杨健辉
人工智能智能硬件ocr
护照阅读器在机场的应用广泛且关键,尤其在全球化背景下,机场作为国际旅客出入境的核心枢纽,对身份核验的效率、安全性和合规性要求极高。护照阅读器通过自动化、智能化的技术手段,显著提升了机场多个环节的运营水平。以下是其具体应用场景和优势:1.值机与登机流程优化自助值机柜台(Self-ServiceKiosks)护照阅读器集成在自助设备中,旅客扫描护照后自动提取信息(如姓名、航班号、签证状态),快速完成值
- 想要了解大模型,看懂这一篇就够了!大模型工作流程及核心参数介绍!
Gq.xxu
qwen3vllmtransforms大语言模型部署深度学习人工智能
若想深入探究大模型核心参数的效果与作用,就务必先弄清大模型的工作流程,明确核心参数在流程各阶段的效能与功能,知晓其具体含义。一,大模型的工作流程大模型运行时的工作原理可以概括为输入处理→特征提取→模型推理→结果生成四个核心阶段,整个过程融合了深度学习架构、自然语言处理技术以及分布式计算能力。从用户输入到大模型输出,整个工作的处理流程如下:输入文本→分词→嵌入+位置编码→Transformer多层处
- Docker 和 Kubernetes 入门到精通:运维工程师的实战笔记 (近5万字)
运维小贺
运维linuxdocker容器kubernetes云原生kubelet
文章目录1.Docker1.1Docker是什么?1.1.1容器服务原理1.2Docker的三大概念1.2.1镜像1.2.2容器1.2.3仓库1.2.4总结1.3Docker常用命令1.3.1镜像常用命令1.3.2容器常用命令1.4Dockerfile1.4.1commit的局限1.4.2Dockerfile是什么?1.4.3如何使用Dockerfile制作镜像?1.4.4Dockerfile中常
- 服务器间接口安全问题的全面分析
百锦再@新空间
包罗万象服务器安全运维JWTTOKENapinet
一、服务器接口安全核心威胁文章目录**一、服务器接口安全核心威胁****二、六大安全方案深度对比****1.IP白名单机制****2.双向TLS认证(mTLS)****3.JWT签名认证****4.OAuth2.0客户端凭证流****
- 大带宽服务器中冗余技术的功能
wanhengidc
服务器运维
随着企业对于网络流量需求的逐渐激增,在业务运行的稳定性要求也在不断提高,大带宽服务器作为支撑高负载应用的基础设施,为了能够保障业务的正常运行,大带宽服务器中的冗余设计起着关键的作用,合理的冗余机制,能够在发生网络故障的情况下,依旧确保业务的可用性。下面,我们就来共同了解一下大带宽服务器中冗余技术的功能都有哪些吧!大带宽服务器中的冗余设计是指通过配置多个物理或者逻辑网络连接,保证待单一链路发生故障时
- 「源力觉醒 创作者计划」_以FastDeploy为例部署ERNIE-4.5-21B大模型全流程实践
cooldream2009
大模型基础AI技术文心大模型FastDeploy
目录前言1环境准备与依赖安装1.1硬件要求1.2Python环境与pip升级2下载ERNIE-4.5模型权重2.1安装HuggingFaceCLI工具2.2设置国内镜像加速(可选)2.3下载模型文件3安装FastDeploy与Paddle推理引擎3.1安装PaddlePaddle-GPU版本3.2安装FastDeploy-GPU4启动ERNIE-4.5本地服务4.1启动OpenAI兼容API服务4
- AI初学者如何对大模型进行微调?——零基础保姆级实战指南
仅需8GB显存,三步完成个人专属大模型训练四步实战:从环境配置到模型发布步骤1:云端环境搭建(10分钟)推荐使用阿里魔塔ModelScope免费GPU资源:#注册后执行环境初始化pip3install--upgradepippip3installbitsandbytes>=0.39.0gitclone--depth1https://github.com/hiyouga/LLaMA-Factory.
- 软考(软件设计师)数据库原理-数据库规范化理论,四大范式,完整性约束
关系数据库规范化理论,四大范式,完整性约束关系数据库规范化是一种组织数据库表结构和字段的技术,目的是减少数据冗余、消除更新异常,并确保数据依赖的合理性。一、范式基本概念范式(NormalForm)是符合某一种级别的关系模式的集合,分为1NF、2NF、3NF、BCNF、4NF、5NF等,级别越高约束越严格。二、各范式详细说明1.第一范式(1NF)要求:表中每个字段都是原子性的,不可再分每个字段具有相
- 从0开始学习R语言--Day41--Moran‘s I
Chef_Chen
学习
在处理带有空间特征的数据,我们往往都直接一股脑地处理数据点,但很多时候,空间上的信息对于处理后续衍生出来的问题会有很大帮助,例如对于城市里大小县城的发展情况,只知道单一县城的经济发展曲线,很难解释一些拐点和突然的攀升,而如果知道相邻县城存在经济发展飞快的例子,可能就是被带动了经济水平;亦或者是在处理社交网络的好有问题时,只知道谁和谁是朋友(类似于空间矩阵),是无法推断出经济收入相似的推论的,所以说
- 扣子智能体5:使用Python异步执行工作流并获取执行结果
呆萌的代Ma
大模型python扣子
使用python异步执行工作流的步骤有3步:异步执行工作流,获取工作流的execute_id,之后就能根据这个id查询工作流的执行情况如果execute_id=“Success”,就表示工作流执行完毕执行完毕后,打印output,就是大模型最后的全部示例代码fromloguruimportloggerimportrequestsimportjsondefrun_coze_ai(coze_api_t
- MCP客户端请求MCP服务器资源的Python SDK实现
AI天才研究院
计算AI人工智能与大数据Python实战python开发语言ai服务器
我将为您提供一个详细的指南,说明如何使用PythonSDK让MCP客户端请求MCP服务器的资源。MCP客户端请求MCP服务器资源的PythonSDK实现核心概念ModelContextProtocol(MCP)是一个标准化协议,允许应用程序以标准化的方式为大语言模型(LLM)提供上下文,将提供上下文的关注点与实际的LLM交互分离。MCP中的资源(Resources)是一种核心原语,允许服务器暴露数
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 大模型API密钥的环境变量配置(大模型API KEY管理)(将密钥存储在环境变量)(python-dotenv)(密钥管理)环境变量设置环境变量
Dontla
大模型LLMpython开发语言
文章目录大模型API密钥的环境变量配置:安全与最佳实践引言安全风险代码泄露风险版本控制暴露环境变量的优势安全隔离跨环境一致性环境变量配置方法Linux/macOS配置Windows配置开发框架集成Node.js使用dotenvPython使用python-dotenv最佳实践.env文件管理环境变量模板容器环境配置安全增强措施密钥轮换机制秘密管理服务集成总结大模型API密钥的环境变量配置:安全与最
- AI智能体长期记忆系统架构设计与落地实践:从理论到生产部署
一休哥助手
人工智能人工智能
摘要长期记忆能力是AI智能体实现持续个性化服务的核心瓶颈。本文基于Mem0、MemoryOS等前沿研究,系统解析长期记忆系统的三级架构、六大原子操作与生产级优化方案,结合金融、医疗等场景案例,通过7张架构图与4张对比表格,揭示如何实现91%延迟降低与90%成本节约的企业级记忆系统。全文超6000字,提供可落地的架构范式。1长期记忆:AI智能体的认知基石1.1人类记忆与AI记忆的类比情景记忆语义记忆
- 解密鸿蒙系统的隐私护城河:从权限动态管控到生物数据加密的全链路防护
摘要本文以健康管理应用为例,展示鸿蒙系统如何通过细粒度权限控制、动态权限授予、数据隔离和加密存储四大核心机制,实现复杂场景下的用户隐私保护。我们将通过完整的权限请求流程和敏感数据处理代码,演示鸿蒙系统如何平衡功能需求与隐私安全。场景描述想象一个健康管理应用需要实现以下功能:读取步数传感器数据(ohos.permission.ACTIVITY_MOTION)获取位置信息绘制运动轨迹(ohos.per
- AlphaEvolve:谷歌的算法进化引擎 | 从数学证明到芯片设计的AI自主发现新纪元
大千AI助手
人工智能Python#OTHER算法人工智能深度学习AlphaEvolvegooglegemini
AlphaEvolve:谷歌的算法进化引擎|从数学证明到芯片设计的AI自主发现新纪元——结合大语言模型与进化计算,重塑科学发现与工程优化的通用智能体本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!⚙️一、核心定义与技术架构AlphaEvolve是由谷歌DeepMind开发的通用科学AI智能体,其核心
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f