【3维视觉】ShapeNet数据集介绍

0.ShapeNet组织结构

ShapeNet

* ShapeNetCore
 	+  ShapeNetCore.v1
 	+ ShapeNetCore.v2
* ShapeNetSem

1.ShapeNetCore

ShapeNetCore is a densely annotated subset of ShapeNet covering 55 common object categories with ~51,300 unique 3D models. Each model in ShapeNetCore are linked to an appropriate synset in WordNet (version 3.0). The distribution of for ShapeNetCore is organized into one zip file per synset.
Each zip file is named by the synset noun offset as an eight-digit zero padded string. For example, bench is contained within 02828884.zip since the WordNet synset offset for bench is (you can browse WordNet 3.1 online). The corresponding ImageNet synsets can be accessed at where is replaced by the padded synset offset (note that ImageNet includes an ‘n’ prefix for noun synsets). For instance, the ImageNet url for bench is http://www.image-net.org/synset?wnid=n02828884.02828884http://www.image-net.org/synset?wnid=n

ShapeNetCore 是 ShapeNet 的密集注释子集,涵盖 55 个常见对象类别,具有约 51,300 个独特的 3D 模型。ShapeNetCore中的每个模型都链接到 WordNet(版本 3.0)中的相应程序集。ShapeNetCore的文件组织结构是每个synset在一个 zip 文件中。每个 zip 文件都由 synset 名词偏移量命名为八位零填充字符串。例如,bench包含在 02828884 .zip

1.1.ShapeNetCore v1 (July 2015)

数据集大小:30.3GB

数据组织结构

下载并解压缩的Shapenetcore.V1由一组文件组成。每个文件由一组模型目录和csv文件组成,组织如下:

  • synsetId
    • modelId
      • model.obj : (3D Rotatable version of the image)
      • model.mtl : Materials file for OBJ; Includes the name of texture files and material properties.
      • images
        • jpg, png: Textures for the 3D model
  • synsetId.csv : (Metadata associated with the model of the synset)

1.2.ShapeNetCore v2 (Fall 2016)

数据集大小:25GB

数据组织结构

下载并解压缩的Shapenetcore.V2由一组文件组成。每个文件由一组模型目录和csv文件组成,组织如下:

  • synsetId

    • modelId
      • models
        • model_normalized.json : Metadata for normalization of the 3D model (bounding box, centroid) and model statistics (number of vertices, etc)
        • model_normalized.obj : 3D mesh in OBJ format (specifying vertices and faces)
        • model_normalized.mtl : Materials file for OBJ; Includes the name of texture files and material properties.
        • model_normalized.solid.binvox : Filled-in binary voxelizations of models in binvox format
        • model_normalized.surface.binvox : Binary voxelizations of model surfaces in binvox format
      • images
        • jpg, png: Textures for the 3D model
      • screenshots
        • png : 2D renderings of the 3D model from different angles

1.3 下载方式

注册账号下载,注册后登录。

登录界面

【3维视觉】ShapeNet数据集介绍_第1张图片

ShapeNetCore下载界面

【3维视觉】ShapeNet数据集介绍_第2张图片

ShapeNetCore.v1下载子集

URL格式:http://shapenet.cs.stanford.edu/shapenet/obj-zip/ShapeNetCore.v1/[synsetId].zip

举例:
下载02828884.zip,即bench数据子集,链接为:
http://shapenet.cs.stanford.edu/shapenet/obj-zip/ShapeNetCore.v1/02828884.zip

ShapeNetCore.v2只能下载整个数据集

2.ShapeNetSem

官方介绍

a subset of ShapeNet richly annotated with physical attributes, which we release for the benefit of the research community.

它是ShapeNet的一个子集,带有丰富的物理属性注释。

包含的内容主要有:

  1. model data
  • models-OBJ.zip : OBJ format 3D mesh files (with accompanying MTL material definition files)
  • models-textures.zip : texture files used by above 3D mesh representations
  • models-COLLADA.zip : COLLADA (DAE) format 3D mesh files
  • models-binvox.zip : Binary voxelizations of model surfaces in binvox format
  • models-binvox-solid.zip : Filled-in binary voxelizations of models in binvox format
  • models-screenshots.zip : Pre-rendered screenshots of each model from 6 canonical orientations (front, back, left, right, bottom, top), and another 6 “turn table” positions around the model
  1. metadata file
  • metadata.csv: contains the metadata associated with each model
  • categories.synset.csv : maps manual category labels to WordNet synsets and glosses
  • materials.csv : set of per-category material priors extracted from OpenSurfaces [Bell et al. 2014] dataset
  • densities.csv : material densities (g / cm3) and static coefficients of friction
  • taxonomy.txt : defines the taxonomy of our manual categories. Lines start with parent category followed by child categories, all separated by tabs. Note comment lines starting with ‘#’

下载方式:

用上述metadata的文件名替代下方URL中最后的README.txt。

http://shapenet.cs.stanford.edu/shapenet/obj-zip/ShapeNetSem.v0/README.txt

  • 举例:
    下载models-OBJ.zip
    则链接为:http://shapenet.cs.stanford.edu/shapenet/obj-zip/ShapeNetSem.v0/models-OBJ.zip

你可能感兴趣的:(3维视觉,机器学习,点云智能编码,计算机视觉,3d,机器学习)