- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 有负环的费用流问题:用消消乐“白嫖”的艺术
牛马程序员_江
phplinux开发语言.net
有负环的费用流问题:用消消乐“白嫖”的艺术前文回顾:https://www.cnblogs.com/ofnoname/p/18731222想象你是一家快递公司的调度员,每天的任务是将货物从仓库高效送到客户。你设计了一条完美路线:每辆卡车都走最短路径,运费最省,按时送达——直到有一天,某个司机突然上报了一个诡异的现象:“老板,我的卡车在某个路口绕圈转了10次,运费反而比直送更便宜!”你眉头一皱,打开
- 二叉树--路径
通凡
数据结构二叉树操作二叉树存储路径
二叉树中,从根节点到叶节点的每一条连接,我们称之为路径,最短路径和最长路径在之前的博客中,我们已经完成了对他们的讨论,现在我们讨论一下,输出一棵二叉树中全部的路径信息。代码如下所示:publicclassOperation{Listresult=newLinkedList();//存储最后的结果publicListbinaryTreePaths(TreeNoderoot){if(root==nul
- 数据结构------最短路弗洛伊德算法(Flody)
不羁修士
数据结构c++图论数据结构图搜索算法动态规划
目录前言一、Foldy代码核心介绍二、Flody代码详解:三、所有代码:四、Foldy算法分析:总结前言如果你要求所有顶点至所有顶点的最短路径问题时,弗洛伊德算法是非常不错的选择。因为它十分简洁。一、Foldy代码核心介绍(1)两个二维数组D[v][w]和P[v][w],分别存最短距离和最短路径。(2)D[v][w]=min(D[v,w],D[v][k]+D[k][w])二、Flody代码详解:/
- 路由协议有哪些?
你的四舅老爷
路由协议网络网络协议p2p
1、RIP协议-路由信息协议,属于最早的动态路由协议优点:节约成本,对资源消耗较低,配置简单,对硬件要求低,占用CPU、内存低,所以在小型网络中还有使用到。缺点:计算路由慢,链路变化了收敛慢,能够保存的路由表相对较小,最多只能支持15台设备的网络,只适用于小型网络2、OSPF协议-开放最短路径优先协议,企业网主要使用的协议优点:技术成熟,碰到的问题基本上在资料上都能够查到,收敛快,由于cisco的
- 计算机网络之路由协议(自治系统)
DKPT
#计算机网络计算机网络开发语言算法笔记学习
一、自治系统(AS)自治系统是由同一个技术管理机构管理、使用统一选路策略的一些路由器的集合。它是网络的基本构成单位,每个自治系统是一个独立运营并自主决定与谁交换流量的实体。自治系统内部运行内部网关协议(IGP),而自治系统之间则运行外部网关协议(EGP)。二、路由协议内部网关协议(IGP):在一个自治系统内部使用的路由选择协议。主要协议包括:RIP(路由信息协议)、OSPF(开放最短路径优先协议)
- 算法|图论|BFS和DFS
锅巴xx
算法算法图论宽度优先c++笔记学习
图论|BFS和DFS1.BFS2.DFS心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。BFSBFS广度优先搜索BFS(Breadth-First-Search),是一种遍历算法,也是很多重要的图的算法的原型(如:Dijstra单源最短路径算法和Prim最小生成树算法)。属于一种盲目搜寻法,目的是系统地展开并检查图中
- 最短路径算法(算法篇)
Moon2144
数据结构与算法算法图论
算法之最短路径算法最短路径算法概念:考查最短路径问题,可能会输入一个赋权图(也就是边带有权的图),则一条路径的v1v2…vN的值就是对路径的边的权求和,这叫做赋权路径长,如果是无权路径长就是单纯的路径上的边数。在赋权图,可能会出现负值边的情况,这样当我们去找最短路径时,可能会产生负值圈,毕竟一直走负值边可以将数值变得更短。单源最短路径问题:给定一个赋权图G=(V,E)和一个特定顶点s作为输入,找出
- 图论 之 BFS
JNU freshman
算法蓝桥杯图论宽度优先算法蓝桥杯
文章目录3243.新增道路查询后的最短距离1311.获取你好友已观看的视频BFS:广度优先搜索(BFS)是一种常用的算法,通常用于解决图或树的遍历问题,尤其是寻找最短路径或层级遍历的场景。BFS的核心思想是使用队列(FIFO数据结构)来逐层遍历节点。模版fromcollectionsimportdeque#graphdefbfs(start):#初始化队列,并将起始节点加入队列queue=dequ
- 图论 之 弗洛伊德算法求解全源最短路径
JNU freshman
算法蓝桥杯图论算法
文章目录题目1334.阈值距离内邻居最少的城市Floyd算法适合用于求解多源的最短路径的问题,相比之下,Dijkstra算法适合用于求解单源的最短路径的问题,并且,当边的权值只有1的时候,我们还能使用BFS求解最短路径的问题图论之BFS图论之迪斯科特拉算法求解最短路径灵神讲解Floyd算法可以从递归中得到,相对应的,我们也有使用记忆化搜索和动态规划进行求解递归方式的模版@cachedefdfs(k
- 深入剖析 C++ 中的迪杰斯特拉算法
小白布莱克
c++算法开发语言
在图论算法的领域中,迪杰斯特拉(Dijkstra)算法是一颗璀璨的明星,它在解决单源最短路径问题上发挥着关键作用。对于学习C++编程的开发者来说,掌握迪杰斯特拉算法不仅能加深对算法思维的理解,还能在实际项目中有效解决诸多路径规划相关问题。迪杰斯特拉算法原理迪杰斯特拉算法是一种贪心算法,用于计算一个节点到图中其他所有节点的最短路径。它的核心思想是:从源节点出发,每次从未确定最短路径的节点中选择距离源
- 华为动态路由-OSPF-完全末梢区域
小冷爱学习!
网络通信华为服务器网络
华为动态路由-OSPF-完全末梢区域一、OSPF简介1、OSPF概述OSPF是一种开放式的、基于链路状态的内部网关协议(IGP),用于在自治系统内部进行路由选择和通信。OSPF是互联网工程任务组(IETF)定义的标准之一,被广泛应用于企业网络和互联网中。OSPF使用Dijkstra算法计算最短路径,并维护一个基于链路状态的路由数据库,以选择最佳路径2、OSPF特点开放性(Open):OSPF是一种
- 深入解析BFS算法:C++实现无权图最短路径的高效解决方案
Exhausted、
算法c++算法开发语言宽度优先数据结构
在无权图中,广度优先搜索(BFS)是解决最短路径问题的高效算法。接下来博主从专业角度深入探讨其实现细节,并给出C++代码示例:目录一、核心原理二、算法步骤三、C++实现关键点1.数据结构2.边界检查3.路径回溯(可选)四、代码实现五、路径回溯实现六、复杂度分析七、适用场景与限制一、核心原理BFS按层遍历节点,确保首次到达目标节点的路径是最短的。其核心特性为:队列管理:先进先出(FIFO)保证按层扩
- OSPF基础知识总结
Rebesa
智能路由器网络网络协议网络安全
基本概念协议类型:链路状态型IGP(内部网关协议),基于Dijkstra算法计算最短路径树。协议号:IP层协议,协议号89。特点:支持分层设计(区域划分)、快速收敛、无环路、支持VLSM/CIDR。区域(Area)骨干区域(BackboneArea):Area0,所有非骨干区域必须直接或通过虚链路连接到Area0。区域边界路由器(ABR):连接不同区域的路由器,汇总区域间路由。自治系统边界路由器(
- 【C++第二十章】红黑树
A.A呐
C++c++开发语言
【C++第二十章】红黑树红黑树介绍红黑树是一种自平衡的二叉搜索树,通过颜色标记和特定规则保持树的平衡性,从而在动态插入、删除等操作中维持较高的效率。它的最长路径不会超过最短路径的两倍,它的查找效率比AVL树更慢(对于CPU来说可以忽略不计),但是它不会像AVL树那样花费更大的代价去实现严格平衡(旋转)。1.红黑树与AVL树特性红黑树AVL树平衡标准通过颜色规则约束,允许一定不平衡严格平衡(左右子树
- 【深度解析】最短路径算法:Dijkstra与Floyd-Warshall
吴师兄大模型
算法数据结构python最短路径算法Dijkstra算法Floyd-Warshall开发语言
系列文章目录01-从零开始掌握Python数据结构:提升代码效率的必备技能!02-算法复杂度全解析:时间与空间复杂度优化秘籍03-线性数据结构解密:数组的定义、操作与实际应用04-深入浅出链表:Python实现与应用全面解析05-栈数据结构详解:Python实现与经典应用场景06-深入理解队列数据结构:从定义到Python实现与应用场景07-双端队列(Deque)详解:Python实现与滑动窗口应
- c/c++蓝桥杯经典编程题100道(22)最短路径问题
tamak
算法数据结构图论c语言c++蓝桥杯
最短路径问题->返回c/c++蓝桥杯经典编程题100道-目录目录最短路径问题一、题型解释二、例题问题描述三、C语言实现解法1:Dijkstra算法(正权图,难度★★)解法2:Bellman-Ford算法(含负权边,难度★★★)四、C++实现解法1:Dijkstra算法(优先队列优化,难度★★☆)解法2:Floyd-Warshall算法(多源最短路径,难度★★★)五、总结对比表六、特殊方法与内置函数
- 13-二叉树最小深度-深度优先(DFS)
最遥远的瞬间
算法合集深度优先算法
一、定义什么是二叉树的最小深度?二叉树的最小深度是指从根节点到最近的叶子节点的最短路径上的节点数。叶子节点是指没有子节点的节点。举个例子:1/\23/4这棵树的最小深度是2,因为从根节点1到叶子节点3的路径最短,只需要经过1和3两个节点。深度优先搜索(DFS)的思路深度优先搜索是一种遍历树的方法,它的特点是一条路走到底,直到遇到叶子节点或者无法继续前进时,再回溯到上一个节点,尝试其他路径。用DFS
- js根据两个经纬度点计算文字显示角度
钱端工程师
javascript
主要用到Turf.js库中的一个方法:rhumbBearing。用于计算两点之间的罗盘方位角(也称为恒向线角或罗盘角)。这种方法假设地球是一个球体,并且沿着最短路径(即大圆路径)测量两点之间的距离和方位角,但在计算方位角时采用了一种简化的方法,即假设沿恒向线(罗盘线)航行。1.安装Turf.js://在项目目录的命令行中输入:npminstall@turf/turf2.使用:import{rhum
- 图论- Dijkstra算法
左灯右行的爱情
图论算法python
Dijkstra算法前言概念BFS基础模版DijkstraDijkstra函数签名State类distTo记录最短路径伪代码模版第一个问题解答第二个问题解答第三个问题解答前言学习这个算法之间,必须要对BFS遍历比较熟悉,它的本质就是一个特殊改造过的BFS算法.概念Dijkstra算法是一种计算图中单源最短路径算法,本质上是一个经过特殊改造的BFS算法,改造点有两个:使用优先队列,而不是普通队列进行
- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- leetcode_二叉树 111. 二叉树的最小深度
MiyamiKK57
leetcode算法深度优先
111.二叉树的最小深度给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。说明:叶子节点是指没有子节点的节点。1.深度遍历DFS(递归)#Definitionforabinarytreenode.#classTreeNode(object):#def__init__(self,val=0,left=None,right=None):#self.val=val#
- 数据结构-图(二)
大明湖的狗凯.
数据结构数据结构算法
文章目录图的基本应用:深入解析与实践一、引言二、最小(代价)生成树(一)概念与性质(二)算法实现三、最短路径(一)概念与分类(二)单源最短路径算法(三)多源最短路径算法-Floyd-Warshall算法图的基本应用:深入解析与实践一、引言图作为一种强大的数据结构,在众多领域有着广泛而重要的应用。从计算机网络到项目管理,从交通规划到电路设计,图的相关算法和概念都发挥着关键作用。本文将详细探讨图的几个
- 洛谷--P4779 【模板】单源最短路径(标准版)
Ustinian.'
数据结构贪心算法算法
单源最短路径题目来源一、基础dijkstra二、堆优化的dijkstra题目来源洛谷–P4779【模板】单源最短路径(标准版)一、基础dijkstra基本思路:1.定义ans[100000],ans[i]代表到达i点的最小花费2.定义bool数组visit,代表是否来过这里2.ans[起点]=0,其余的赋值为inf3.定义一个curr变量,visit[current]=1(访问过),代表现在的位置
- 【洛谷】P4779 单源最短路径(标准版+弱化版) Dijkstra堆优化
追风者_
最短路径队列洛谷
题目背景2018年7月19日,某位同学在NOIDay1T1归程一题里非常熟练地使用了一个广为人知的算法求最短路。然后呢?100\rightarrow60100→60;\text{Ag}\rightarrow\text{Cu}Ag→Cu;最终,他因此没能与理想的大学达成契约。小F衷心祝愿大家不再重蹈覆辙。题目描述给定一个nn个点,mm条有向边的带非负权图,请你计算从ss出发,到每个点的距离。数据保证
- 洛谷[P4779]单源最短路径(标准版)
Shadow_of_the_sun
c++
前言SPFASPFA算法由于它上限O(NM)=O(VE)O(NM)=O(VE)的时间复杂度,被卡掉的几率很大.在算法竞赛中,我们需要一个更稳定的算法:dijkstradijkstra.什么是dijkstradijkstra?dijkstradijkstra是一种单源最短路径算法,时间复杂度上限为O(n^2)O(n2)(朴素),在实际应用中较为稳定;;加上堆优化之后更是具有O((n+m)\log_{
- 每日一知识:图的遍历算法(bfs+dfs),javascript实现
程序猿阿嘴
前端javascript每日一知识算法深度优先宽度优先
什么是图?在计算机中,图结构也是一种非常常见的数据结构。图论也是一个非常大的话题图结构是一种与树结构有些相似的数据结构。图论是数学的一个分支,并且,在数学的概念上,树是图的一种。图主要研究的目的是事物之间的关系,顶点代表事物,边代表两个事物间的关系。图在生活中的应用场景:人与人之间的关系(比如六度空间理论),地点之间的联系图(地图App,就是通过图来计算最短路径或最优路径)图的特点一组顶点:通常用
- 2.9学习总结
张张张312
学习
最短路径(dijkstra算法)单源点最短路径什么叫单源点最短路径?单源点指的就是单一的起始点,那么单源点最短路径指的就是,从单一起始点到其余顶点的最短路径。网图与非网图的单源点最短路径对于非网图而言,最短路径表示的是由起始点到终点需要经过的最少路径条数对于网图而言,最短路径表示的是由起始点到终点,所需花费的最少代价,也就是路径权值总和最小模板代码初始化:1.1初始化dist[i]数组1.2根据d
- BFS算法篇——FloodFill问题的高效解决之道(上)
诚丞成
常用算法讲解算法宽度优先
文章目录前言一.FloodFill问题概述二.BFS在FloodFill中的应用三.BFSFloodFill算法的优势四.BFSFloodFill的实现小结前言BFS(广度优先搜索,Breadth-FirstSearch)是一种图搜索算法,主要用于遍历或搜索树或图的所有节点。BFS从根节点开始,首先访问当前节点的所有邻居节点,然后按层次逐步向外扩展。该算法通常用于找出两点之间的最短路径、计算连通区
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f