golang使用泛型实现mapreduce操作

1.使用面向对象的方式写

package stream

import (
	"fmt"
	"log"
	"reflect"
	"sort"
	"strconv"
	"strings"
)

type Stream[T any] struct {
	data      []T
	keyBy     string
	sortByNum string
	sortByStr []string
}

func FromElement[T any](data []T) *Stream[T] {
	return &Stream[T]{
		data: data,
	}
}

// 过滤算子
type filterfunc[F any] func(F) bool

func (s *Stream[T]) Filter(filterFun filterfunc[T]) *Stream[T] {
	var new []T
	for _, item := range s.data {
		isfiltered := filterFun(item)
		if isfiltered {
			continue
		}
		new = append(new, item)
	}
	s.data = new
	return s
}

// 单行处理
type mapfunc[F any] func(F) F

func (s *Stream[T]) Map(mapFun mapfunc[T]) *Stream[T] {
	for idx, item := range s.data {
		ret := mapFun(item)
		s.data[idx] = ret
	}
	return s
}

// 排序
func (s *Stream[T]) SortByNum(key string) *Stream[T] {
	s.sortByNum = key
	if len(s.sortByStr) > 0 {
		s.sortByStr = nil
	}
	return s
}

// 每次排序只能使用一种排
func (s *Stream[T]) SortByStr(keys ...string) *Stream[T] {
	s.sortByStr = keys
	if s.sortByNum != "" {
		s.sortByNum = ""
	}
	return s
}

func (s *Stream[T]) Sort(esc bool) *Stream[T] {
	if s.sortByNum == "" && len(s.sortByStr) == 0 {
		log.Println("please call SortBy() before sort()")
		return s
	}
	if s.sortByNum != "" {
		sort.Slice(s.data, func(i, j int) bool {
			v := reflect.ValueOf(s.data[i]).Elem()
			field := v.FieldByName(s.sortByNum)
			if !field.IsValid() {
				log.Panicf("field=%s not valid", s.sortByNum)
			}
			idata := fmt.Sprintf("%v", field.Interface())
			num, err := strconv.ParseInt(idata, 10, 64)
			if err != nil {
				log.Panic("please use num when use sortByNum", idata)
			}

			v1 := reflect.ValueOf(s.data[j]).Elem()
			field1 := v1.FieldByName(s.sortByNum)
			if !field1.IsValid() {
				log.Panicf("field=%s not valid", s.sortByNum)
			}
			jdata := fmt.Sprintf("%v", field1.Interface())
			num1, err := strconv.ParseInt(jdata, 10, 64)
			if err != nil {
				log.Panic("please use num when use sortByNum")
			}
			if esc {
				return num < num1
			} else {
				return num > num1
			}

		})
	}

	if len(s.sortByStr) > 0 {
		sort.Slice(s.data, func(i, j int) bool {
			var ifinalv, jfinalv string
			for _, key := range s.sortByStr {
				v := reflect.ValueOf(s.data[i]).Elem()

				field := v.FieldByName(key)
				if !field.IsValid() {
					log.Panicf("field=%s not valid", key)
				}
				idata := fmt.Sprintf("%v", field.Interface())
				ifinalv = ifinalv + idata
			}

			for _, key := range s.sortByStr {
				v := reflect.ValueOf(s.data[j]).Elem()

				field := v.FieldByName(key)
				if !field.IsValid() {
					log.Panicf("field=%s not valid", key)
				}
				jdata := fmt.Sprintf("%v", field.Interface())
				jfinalv = jfinalv + jdata
			}
			// i 大于j的话 返回1 所以正序需要返回false
			ret := strings.Compare(ifinalv, jfinalv)
			if esc {
				return ret < 0
			}
			return ret >= 0
		})
	}
	return s
}

// 设置聚合的key
func (s *Stream[T]) KeyBy(key string) *Stream[T] {
	s.keyBy = key

	return s
}

// reduce
// 暂时木有办法改变输出的结构
type reducefunc[F any] func([]F) F

func (s *Stream[T]) Reduce(reduceFun reducefunc[T]) *Stream[T] {
	if s.keyBy == "" {
		log.Fatal("please call keyby() before reduce()")
		return nil
	}
	var cache = make(map[string][]T)
	defer func() {
		cache = nil
	}()
	for _, item := range s.data {
		v := reflect.ValueOf(item).Elem()
		field := v.FieldByName(s.keyBy)
		key := field.String()
		lis, ok := cache[key]
		if !ok {
			lis = make([]T, 0)
		}
		lis = append(lis, item)
		cache[key] = lis
	}
	var new []T
	for _, lis := range cache {
		ret := reduceFun(lis)
		new = append(new, ret)
	}
	s.data = new
	return s
}

// 返回个数
func (s *Stream[T]) Limit(n int) []T {
	if n > len(s.data) {
		n = len(s.data)
	}
	return s.data[0:n]
}

func (s *Stream[T]) Print() {
	for idx, item := range s.data {
		log.Printf("idx=%d val=%v", idx, item)
	}
}

func (s *Stream[T]) Result() []T {
	return s.data
}

测试例子

func TestTostream(t *testing.T) {
	FromElement([]*Student{
		&Student{"xyf", "数学", 101},
		&Student{"xyf", "语文", 108},
		&Student{"xyf", "外语", 101},
	}).Map(func(st *Student) *Student {
		st.Score = st.Score + 10
		return st
	}).Filter(func(st *Student) bool {
		return st.Name == "xyf"
	}).
		// SortByStr("Name", "Subject").
		SortByNum("Score").
		Sort(false).
		KeyBy("Name").
		Reduce(func(st []*Student) *Student {
			var ret = &Student{
				Name:    st[0].Name,
				Subject: "all",
			}
			for _, item := range st {
				ret.Score = ret.Score + item.Score
			}
			return ret
		}).
		Print()
}

 缺点:golang有点挫的在于不能在方法里面返回新的泛型类型,比如从student返回一个int类型。虽然能通过在struct定义俩个类型 但是万一要生成第三种类型就无能为力了,不可能一直往后加类型吧(这会导致定义类型超级长 写起来超级丑)。

2.通过函数的方式实现(简单举个例子)

type StreamV2[T any] struct {
	data []T
}

func (s StreamV2[T]) Print() {
	for i, item := range s.data {
		log.Println("idx=", i, " value=", item)
	}
}

func FromElementV2[T any](data []T) Stream[T] {
	return Stream[T]{
		data: data,
	}
}

func Map[T any, K any](source Stream[T], mapfunc func(data T) K) StreamV2[K] {
	var ret []K
	for _, item := range source.data {
		ret1 := mapfunc(item)
		ret = append(ret, ret1)
	}
	return StreamV2[K]{
		data: ret,
	}
}

测试

func TestTostreamv2(t *testing.T) {
	stream1 := FromElementV2([]*Student{
		&Student{"xyf", "数学", 101},
		&Student{"xyf", "语文", 108},
	})
	stream2 := Map(stream1, func(f *Student) int {
		return f.Score
	})
	stream2.Print()
}

优缺点:这种方式能够将一种容器类型转化为另一种。缺点就是写过java的会吐血(因为搞大数据的朋友都喜欢使用类似builder模式的写法)

你可能感兴趣的:(golang,mapreduce)