In this exercise, you will create a circuit with two levels of hierarchy. Your top_module
will instantiate two copies of add16
(provided), each of which will instantiate 16 copies of add1
(which you must write). Thus, you must write two modules: top_module
and add1
.
Like module_add, you are given a module add16
that performs a 16-bit addition. You must instantiate two of them to create a 32-bit adder. One add16
module computes the lower 16 bits of the addition result, while the second add16
module computes the upper 16 bits of the result. Your 32-bit adder does not need to handle carry-in (assume 0) or carry-out (ignored).
Connect the add16
modules together as shown in the diagram below. The provided module add16
has the following declaration:
module add16 ( input[15:0] a, input[15:0] b, input cin, output[15:0] sum, output cout );
Within each add16
, 16 full adders (module add1
, not provided) are instantiated to actually perform the addition. You must write the full adder module that has the following declaration:
module add1 ( input a, input b, input cin, output sum, output cout );
Recall that a full adder computes the sum and carry-out of a+b+cin.
In summary, there are three modules in this design:
top_module
— Your top-level module that contains two of...add16
, provided — A 16-bit adder module that is composed of 16 of...add1
— A 1-bit full adder module.
If your submission is missing a module add1
, you will get an error message that says Error (12006): Node instance "user_fadd[0].a1" instantiates undefined entity "add1"
.
module top_module (
input [31:0] a,
input [31:0] b,
output [31:0] sum
);//
wire cout1,cout2;
wire [15:0] re1,re2;
add16 add_1(a[15:0],b[15:0],15'b0,re1,cout1);
add16 add_2(a[31:16],b[31:16],cout1,re2,cout2);
assign sum={re2,re1};
endmodule
module add1 ( input a, input b, input cin, output sum, output cout );
assign {cout,sum}=a+b+cin;
// Full adder module here
endmodule
这次全用的wire没用reg,因为发现上一题的reg是不必要的