583. 两个字符串的删除操作 - 力扣(LeetCode)
给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
示例:
本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。
这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解
动规五部曲
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];
当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:
情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。
从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。
dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
for(int i = 1; i < len1 + 1; i++) dp[i][0] = i;
for(int j = 1; j < len2 + 1; j++) dp[0][j] = j;
dp[0][0] = 0;
从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。
所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int dp[][] = new int[len1 + 1][len2 + 1];
for(int i = 1; i < len1 + 1; i++) dp[i][0] = i;
for(int j = 1; j < len2 + 1; j++) dp[0][j] = j;
dp[0][0] = 0;
for(int i = 1; i < len1 + 1; i++){
for(int j = 1; j < len2 + 1; j++){
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = Math.min(dp[i - 1][j - 1] + 2, Math.min(dp[i][j - 1], dp[i - 1][j]) + 1);
}
}
}
return dp[len1][len2];
}
}
72. 编辑距离 - 力扣(LeetCode)
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
提示:
编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。
动规五部曲
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
if (word1[i - 1] == word2[j - 1])
不操作
if (word1[i - 1] != word2[j - 1])
增
删
换
在整个动规的过程中,最为关键就是正确理解dp[i][j]
的定义!
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑,dp[i][j]
就应该是 dp[i - 1][j - 1]
,即dp[i][j] = dp[i - 1][j - 1];
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑了,如何编辑呢?
即 dp[i][j] = dp[i - 1][j] + 1;
即 dp[i][j] = dp[i][j - 1] + 1;
这里有同学发现了,怎么都是删除元素,添加元素去哪了。
word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"
,word1
删除元素'd'
和 word2
添加一个元素'd'
,变成word1="a", word2="ad"
, 最终的操作数是一样!
word1
替换word1[i - 1]
,使其与word2[j - 1]
相同,此时不用增删加元素。可以回顾一下,if (word1[i - 1] == word2[j - 1])
的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1]
对吧。
那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
所以 dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1])
时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
那么dp[i][0] 和 dp[0][j] 表示什么呢?
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
dp[0][0] = 0 空字符串和空字符串不需要操作就相等
for(int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
for(int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
dp[0][0] = 0;
从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1
可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nByVxeHF-1691224926511)(https://code-thinking-1253855093.file.myqcloud.com/pics/20210114162113131.jpg “72.编辑距离”)]
for(int i = 1; i < word1.length() + 1; i++){
for(int j = 1; j < word2.length() + 1; j++){
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
class Solution {
public int minDistance(String word1, String word2) {
// dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
int dp[][] = new int[word1.length() + 1][word2.length() + 1];
for(int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
for(int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
dp[0][0] = 0;
for(int i = 1; i < word1.length() + 1; i++){
for(int j = 1; j < word2.length() + 1; j++){
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i - 1][j - 1];
}else{
// 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。 dp[i - 1][j] + 1;
// 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。 dp[i][j - 1] + 1
// 操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。 dp[i - 1][j - 1] + 1
dp[i][j] = Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[word1.length()][word2.length()];
}
}