- python环境部署工具 uv
Honnnnnn
uv
以原先使用的pipenv工具为例子,通过pipfile.lock生成requirements文件,再将requirements转成pyproject.toml文件,最后生成uv.lock基于当前虚拟环境导出requirements.txt--pipfreeze>requirements.txt(如果原先不是env而是基础的通过requirements.txt文件,省去转化requirements的
- vLLM - 查看模型是否支持
云客Coder
人工智能
支持的模型:https://docs.vllm.ai/en/latest/models/supported_models.html要确定是否支持给定模型,您可以检查HF存储库中的config.json文件。如果"architectures"字段包含下面列出的模型架构,那么理论上应该支持它。查看模型架构查看模型的config.json中的architecturescat~/.cache/huggin
- Android Jetpack 应用架构指南
小李子学编程
Android开发文档指南androidandroidjetpack学习
AndroidJetpack应用架构指南本指南涵盖Android应用开发的最佳实践和推荐架构,助力开发者构建健壮高效的应用程序。。前置要求本文假设您已具备Android框架基础知识。若需系统学习Android开发,建议先完成《Android基础知识》目录新架构设计背景移动应用交互特性核心架构原则分离关注点数据模型驱动界面单一数据源单向数据流分层架构设计界面层数据层领域层依赖管理方案工程实践指南参考
- Python调用fofa API接口并写入csv文件中
YOHO !GIRL
网络测绘python网络安全
前言一.功能目的二.功能调研三.编写代码1.引入库2.读取数据3.写入csv文件中总结前言上一篇我们讲述了目前较为主流的几款网络探测系统,简单介绍了页面的使用方法。链接如下,点击跳转:网络空间测绘引擎集合:Zoomeye、fofa、360、shodan、censys、鹰图然而当我们需要针对单个引擎进行二次开发时,页面就不能满足我们的需求了,这就需要参考API文档进行简单的数据处理,接下来,给大家介
- 没想到枚举Enum类还能实现接口!教你玩转Java枚举Enum
林发和
Java干货分享java
枚举是什么?枚举是一种特殊的数据类型,预先定义一组常量(对象),并且必须为其赋值。Java枚举类型的基本想法非常简单:这些类通过共有的静态final域为每个枚举常量导出一个实例。枚举类型没有可以访问的构造器,所以它是真的final类。客户端不能创建枚举类型的实例,也不能对它进行扩展,因此不存实例,而只存在声明过程的枚举常量。也就是枚举类型是实例受控的。它们是单例(Singleton)的范型化,本质
- 回答我!!!如何用“快递分拣”讲明白OSI五层模型?
茫忙然
计算机网络网络
刚开始学习计算机网络时,会比较难理解计算机网络的五层协议,毕竟确实挺抽象的,接下来我用寄快递的过程来类比计算机网络的五层协议(物理层、数据链路层、网络层、传输层、应用层),帮助大家理解每一层的功能和作用。1.物理层(PhysicalLayer)——交通工具和道路快递中的比喻:卡车、飞机、轮船等运输工具,以及高速公路、铁路、航线等物理路径。功能:负责将包裹(数据)从一个地点物理传输到另一个地点,不关
- 数据结构之顺序表和栈
Dust-Chasing
数据结构算法c语言
一、顺序表1.1顺序表的概念及结构顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。1.2静态顺序表静态顺序表,即使用定长的数组来存储元素,用下面一张图就可以清楚看懂1.3动态顺序表动态顺序表:使用动态开辟的数组存储。与静态顺序表不同,动态顺序表使用的数组大小可以动态变化,从而实现更灵活的储存数据。二、动态顺序表的实现静态顺序表只适
- stability ai推出的 AI模型2D图像转3D视频
微丽宝
AI工具人工智能3d音视频
StableVirtualCamera是StabilityAl推出的A|模型,能将2D图像转换为具有真实深度和透视感的3D视频。用户可以通过指定相机轨迹和多种动态路径(如螺旋、推拉变焦、平移等)来生成视频。模型支持从1到32张输入图像生成不同宽高比(如1:1、9:16、16:9)的视频,最长可达1000帧。无需复杂的重建或优化,可生成高质量的3D视频,同时保持3D一致性和时间平滑性。StableV
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 不神话大模型,不做技术乌托邦,用"传统IT+AI积木"实现企业智能转型
人工智能
一、开篇:AI革命的务实辩证法在技术狂热与落地鸿沟并存的AI时代,灵燕智能体开发平台提出"三轮驱动法则":•不颠覆的智慧:MySQL、知识图谱库、MQ等传统中间件构成数字地基•不空想的创新:大模型仅承担"认知苦力",在人类设计的思考链中定向发力•不取巧的工程:通过D2R映射、低代码工具、元数据治理实现可落地的智能装配二、核心价值:智能开发的工业流水线技术要素原子化拆解将复杂需求分解为可执行的"技术
- 197.HarmonyOS NEXT系列教程之图案锁振动反馈实现详解
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT系列教程之图案锁振动反馈实现详解效果预览1.振动功能实现startVibrator(vibratorCount?:number){try{vibrator.startVibration({//设置为'preset',可使用系统预置振动效
- 186.HarmonyOS NEXT系列教程之列表切换案例数据管理详解
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT系列教程之列表切换案例数据管理详解效果演示1.数据模型设计1.1ListInfo类@ObservedexportclassListInfo{//列表项数据结构icon:ResourceStr='';//图标资源name:Resource
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【论文阅读】实时全能分割模型
万里守约
论文阅读论文阅读图像分割图像处理计算机视觉
文章目录导言1、论文简介2、论文主要方法3、论文针对的问题4、论文创新点总结导言在最近的计算机视觉领域,针对实时多任务分割的需求日益增长,特别是在交互式分割、全景分割和视频实例分割等多种应用场景中。为了解决这些挑战,本文介绍了一种新方法——RMP-SAM(Real-TimeMulti-PurposeSegmentAnything),旨在实现实时的多功能分割。RMP-SAM结合了动态卷积与高效的模型
- Windows10本地部署Dify+Xinference
橘长长长
AI相关aidifyxinferenceglm4
目录前言一、安装必要项1.安装Docker和AnaConda2.安装Xinference3.通过Xinference部署本地glm4-chat-1m4.验证glm4-chat-1m是否部署完成5.安装Dify三、Dify中配置大模型1.浏览器输入http://localhost:80启动Dify页面2.随便注册账户登录3.配置Xinference四、运行Dify1.设置系统推理模型2.对话窗口验证
- unity3D获取游戏物体的四种方式
qq_35430208
unity3d游戏uinity3d图形渲染3d渲染游戏引擎unity3D获取游戏物体
一、第一种:二、第二种:voidStart(){print(transform.Find("GameObject(1)/GameObject"));print(transform.Find("GameObject(2)"));}三、第三种:比较耗性能,不推荐使用voidStart(){GameObjectmainCameraGo=GameObject.Find("MainCamera");//查找
- 论文阅读:2023 arxiv Multiscale Positive-Unlabeled Detection of AI-Generated Texts
CSPhD-winston-杨帆
论文阅读论文阅读人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328MultiscalePositive-UnlabeledDetectionofAI-GeneratedTextshttps://arxiv.org/abs/2305.18149https://www.doubao.com/chat/211427064915225
- 【笔记】扩散模型(五):Classifier-Free Guidance 理论推导与代码实现
LittleNyima
DiffusionModels笔记机器学习深度学习
论文链接:Classifier-FreeDiffusionGuidance上一篇文章我们学习了ClassifierGuidance,这种方法通过引入一个额外的分类器,使用梯度引导的方式成功地实现了条件生成。虽然ClassifierGuidance可以直接复用训练好的diffusionmodels,不过这种方法的问题是很明显的,首先需要额外训练一个分类器,而且这个分类器不仅仅分类一般的图像,还需要分
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- 架构师必知必会系列:数据架构与数据管理
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍数据架构与数据管理介绍数据架构是指用来定义企业数据的逻辑结构、物理存储结构和数据的流转过程。它由数据中心和IT平台、数据库、文件系统、网络、安全、计算资源等构成。其目的是为了满足业务需求、提升组织效率和降低成本。数据架构包括数据字典、元数据、数据模型、数据流、数据仓库、数据管道、数据服务等。在应用中,将数据按照其自身特性进行划分、分类、归档、清洗和加工,才能
- HTTP核心知识
Sean2077
HTTPhttp
理解HTTP协议是优化Web应用性能、调试问题和实现高效通信的基础。以下是前端开发者需要掌握的核心HTTP知识:1.HTTP基础概念请求与响应模型理解客户端(浏览器)发送HTTP请求,服务器返回HTTP响应的基本流程。HTTP方法(Methods)GET:获取资源(幂等操作)POST:提交数据(非幂等)PUT:更新资源DELETE:删除资源HEAD:仅获取响应头OPTIONS:查看服务器支持的通信
- 卷积神经网络 - 理解卷积核的尺寸 k×k×Cin
谦亨有终
AI学习笔记cnn人工智能神经网络深度学习机器学习
卷积神经网络中,每个卷积核的尺寸为k×k×Cin,这一设计的核心原因在于多通道输入的数据结构和跨通道特征整合的需求。以下是详细解释:1.输入数据的结构输入形状:假设输入数据为三维张量,形状为H×W×Cin,其中:H:高度(Height)W:宽度(Width)Cin:通道数(Channelsin)多通道的物理意义:对于RGB图像,Cin=3(红、绿、蓝三通道)。对于中间层的特征图,Cin可能为64、
- 前端性能优化-知识点
甲亿
前端性能优化
Web性能优化意义1.减少整体加载时间:减小文件体积、减少HTTP请求、使用预加载。2.使网站尽快可用:仅加载首屏内容,其他内容根据需要进行懒加载。3.平滑和交互性:使用CSS替代JS动画、减少UI重绘。4.加载表现形式:使用加载动画、进度条、骨架屏等过渡信息,让用户感觉到页面加载更快。5.性能监测:性能指标、性能测试、性能监控持续优化等Web性能指标RAIL性能模型Response(响应):快速
- 嵌入式Linux驱动开发:从基础知识到实践精通
坚持坚持那些年
本文还有配套的精品资源,点击获取简介:嵌入式Linux由于其稳定性、可定制性和丰富资源,在智能设备领域得到广泛应用。掌握嵌入式Linux驱动程序设计对于开发者至关重要。本课程从基础知识点出发,详细介绍了内核接口理解、设备树编程、I/O操作、字符与块设备驱动、网络驱动、电源管理、调试技巧、硬件抽象层、设备模型和模块化编程等关键技能,并通过实际操作实践来强化学习,帮助开发者成长为嵌入式Linux驱动开
- python Qt
Solkatt's
最近帮朋友做了一个将文本文件按条件导出到excel里面的小程序。使用了PyQT,发现Python真是一门强大的脚本语言,开发效率极高。首先需要引用fromPyQt4importQtGui,uic,QtCore很多控件像QPushButton是从QtGui的空间中得来的,下面def__init__(self,parent=None)中定义了界面的设计及与控件相互联系的方法。classAddressB
- 三维点云重建的原理及代码
晚风微凉~
matlab图像处理
点云重建是将来自各种传感器(如激光雷达、相机等)采集的离散点云数据转换为具有结构和几何形状的物体模型的过程。在这个过程中,算法的核心任务是从大量的离散点中提取出具有几何意义的特征,并将这些特征组合成相应的物体模型。在实际应用中,无法获得物体所有表面的三维坐标数据,因此点云重建算法必须处理部分点云数据,尽可能准确地还原物体的几何结构。点云重建的目标是通过对描述物体表面形状的点数据进行处理,根据它们的
- 回归模型评价指标——衡量预测能力
Tang–t
回归数据挖掘人工智能机器学习python
目录一、指标说明1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R²)5.解释方差(ExplainedVariance,EV)6.最大误差(MaximumError)二、代码一、指标说明回归模型
- AI大模型编程能力对比:Deepseek&Claude&Gemini
黑夜路人(heiyeluren)
AI人工智能人工智能aiAIGC语言模型
在当今快速发展的技术领域,人工智能(AI)模型在编程和数据处理方面的应用越来越广泛。不同的AI模型因其独特的设计理念和技术优势,适用于不同的编程任务和场景。本文将对三种主流的AI模型——DeepSeekv3、GeminiFlash2.0和Claude3.5Sonnet的编程能力进行详细对比,帮助读者根据具体需求选择最合适的工具。同时对DeepSeekv3、GeminiFlash2.0和Claude
- 图像质量评价学习笔记02:IQA模型性能评价指标(PLCC、SROCC、KROCC、RMSE)
可靠的豆包蟹同志
图像质量评估IQA图像处理计算机视觉人工智能算法
性能好的图像质量评价(IQA)算法,其质量评测分数会与主观质量分数高度一致,IQA有许多评价指标,为了衡量方法测试结果与主观评价之间的一致性,视频质量专家组VQEG(VideoQualityExpertsGroup,目前国际上对视频质量进行标准化及性能测试的权威组织)提出了四个可以验证客观评价结果和主观评价结果之间的紧密程度的四个指标:PLCC、SROCC、KROCC和RMSE,也是目前最常用的I
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理