基于遗传算法改进的支持向量机多分类仿真,基于GA-SVM的多分类预测,支持相机的详细原理

目录

背影
支持向量机SVM的详细原理
SVM的定义
SVM理论
遗传算法的原理及步骤
SVM应用实例,基于遗传算法优化SVM的多分类预测
完整代码包括SVM工具箱:https://download.csdn.net/download/abc991835105/88175549
代码
结果分析
展望

背影

多分类预测对现代智能化社会拥有重要意义,本文用遗传算法改进的SVM进行多分类预测

支持向量机SVM的详细原理

SVM的定义

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。
(1)支持向量机(Support Vector Machine, SVM)是一种对数据进行二分类的广义线性分类器,其分类边界是对学习样本求解的最大间隔超平面。

(2)SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器 。

(3)SVM可以通过引入核函数进行非线性分类。

SVM理论

1,线性可分性

你可能感兴趣的:(支持向量机SVM,支持向量机,分类,多分类代码,遗传算法改进SVM多分类,GA-SVM多分类)