使用google cloud的compute engine进行深度学习

1. 启动脚本,用来安装显卡驱动

#add gpu

Ubuntu 16.04 LTS or 17.04 - CUDA 8:

#!/bin/bash

echo "Checking for CUDA and installing."

# Check for CUDA and try to install.

if ! dpkg-query -W cuda-8-0; then

# The 16.04 installer works with 16.10.

curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb

dpkg -i ./cuda-repo-ubuntu1604_8.0.61-1_amd64.deb

apt-get update

apt-get install cuda-8-0 -y

fi


sudo apt-get update

2. 安装anaconda包 配置jupyter

mkdir downloads

cd downloads

wget http://repo.continuum.io/archive/Anaconda2-5.0.0.1-Linux-x86_64.sh

bash Anaconda2-5.0.0.1-Linux-x86_64.sh

source ~/.bashrc

jupyter notebook --generate-config

cd ..

sudo vim .jupyter/jupyter_notebook_config.py

将下面四行添加到该文件中

c = get_config()

c.NotebookApp.ip = '*'

c.NotebookApp.open_browser = False

c.NotebookApp.port = 8888


jupyter notebook password

端口与vpc网络->防火墙规则  中自己设置的tcp或者udp端口一致

jupyter-notebook --no-browser --port=8888

安装anaconda后需要重新安装google-compute-engine

sudo pip uninstall google-compute-engine

sudo pip install google-compute-engine

授权google账户

gcloud auth login

安装cudnn6  注意:亲测不能使用6以下版本for tensorflow1.3

现在本地下载好,上传到google storage cloud

然后下载到compute engine

sudo apt-get install openjdk-8-jdk git python-dev python-numpy python-six build-essential python-pip python-virtualenv swig python-wheel libcurl3-dev libcupti-dev

tar -xzvf cudnn-8.0-linux-x64-v6.0.tgz

sudo cp cuda/include/cudnn.h /usr/local/cuda/include

sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

sudo vim ~/.bashrc

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"

export CUDA_HOME=/usr/local/cuda

source ~/.bashrc

echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list

curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -

sudo apt-get update

sudo apt-get install bazel

sudo apt-get upgrade bazel

git clone https://github.com/tensorflow/tensorflow

cd ~/tensorflow

./configure

bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

你可能感兴趣的:(使用google cloud的compute engine进行深度学习)