魔法 [线段树优化DP]

也许更好的阅读体验

D e s c r i p t i o n \mathcal{Description} Description

D D D 正在研究魔法。
D D D 得到了远古时期的魔法咒语 S S S,这个咒语共有 n n n 个音节,每个音节都可以
抽象为一个小写英文字母。
但是很快小 D D D 发现这个咒语并不能直接说出——它具有一定的危险性。
D D D 进行了一些仔细的研究,很快发现危险来源于 m m m 个禁忌词 T 1 , T 2 , … , T m T_1 , T_2 , \ldots, T_m T1,T2,,Tm
D D D 发现,只要说出的咒语中,连续地包含了其中某个禁忌词,那么就会带来很
大的危险。换言之,对于任意 1 ≤ i ≤ m 1 ≤ i ≤ m 1im, T i T_i Ti 都不能是最终说出的咒语 S ′ S' S 的子串。
于是小 D D D 决定在原来的咒语 S S S 上做出一定的删减,使得它不再包含任何禁忌词。
D D D 发现如果他跳过咒语中第 i i i 个音节,那么咒语的威力会减少 a i a_i ai
D D D 想要知道,如何跳过音节可以得到一个安全的咒语,而威力的减少量最少。
值得一提的是,如果小 D D D 跳过了某个音节,那么与之相邻两个音节也不会变得连续。
但是小 D D D 并不会,请你帮帮他。

S o l u t i o n \mathcal{Solution} Solution

先用所有的 T T T S S S K M P KMP KMP,得到若干个区间
那么我们的问题就转化成了有 n n n个点和若干个区间,每个点有点权,你要选若干个点使得每个区间内都至少包含一个点,问最小点权和是多少

考虑 D P DP DP
先将区间按照 r r r升序排序
f i , j f_{i,j} fi,j表示使前 i i i个区间都合法,最后一个点为 j j j的最小点权和是多少
那么对一个区间 [ l i , r i ] [l_i,r_i] [li,ri],其有效的 f f f的区间也为 [ l i , r i ] [l_i,r_i] [li,ri]
考虑 f i , j f_{i,j} fi,j肯定是由 f i − 1 , k   k ∈ [ l i − 1 , r i − 1 ] f_{i-1,k}\ k\in [l_{i-1},r_{i-1}] fi1,k k[li1,ri1]转移来的
于是我们可以去掉一维

f i f_i fi表示最后一个点为 i i i时的答案
然后考虑一个一个的加区间

如图,

魔法 [线段树优化DP]_第1张图片
后一个区间的蓝色部分的 f f f值与前一个区间应是一样的
而红色区间的值则由绿色区间的值转移过来,设红色区间的一个值为 f k f_k fk,则有 f k = min ⁡ { f j , j ∈ [ 绿 色 ] } + a k f_k=\min\{f_j,j\in[绿色]\}+a_k fk=min{fj,j[绿]}+ak
我们可以用线段树查询绿色区间的最小值,并维护红色区间的增值

C o d e \mathcal{Code} Code

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年11月11日 星期一 08时24分38秒
*******************************/
#include 
#include 
#include 
#include 
using namespace std;
const int maxn = 200005;
const int maxm = 2000006;
const int inf = 0x7f7f7f7f;
//cin 省掉了快读
int n,m,tot;
int nxt[maxn],l[maxm],r[maxm],w[maxn],id[maxn];
char s[maxn],t[maxn];
bool cmp (int x,int y){	return r[x]^r[y]?r[x]<r[y]:l[x]<l[y];}
//{{{Get
void Get (char *s,int len)
{
	int j=1,k=0;
	reset(nxt);
	while (j<=len){
		if (!k||s[j]==s[k])	nxt[++j]=++k;
		else	k=nxt[k];
	}
}
//}}}
//{{{Match
int Match (char *s,char *t)//s appears in t
{
	int len=strlen(s+1);
	Get(s,len);
	int j=1,k=1,ans=0;
	while (k<=n){
		if (!j||s[j]==t[k])	++j,++k;
		else	j=nxt[j];
		if (j==len+1){
			l[++tot]=k-len,r[tot]=k-1,id[tot]=tot;
			j=nxt[j];
		}
	}
	return ans;
}
//}}}
//{{{SegmentTree
namespace SegmentTree
{
	#define cl k<<1
	#define cr k<<1|1
	#define lm (lt[k]+rt[k])/2
	#define rm (lt[k]+rt[k])/2+1
	const int maxt = 1000006;
	int lt[maxt],rt[maxt],val[maxt],lazy[maxt],tag[maxt],sum[maxt];
	//{{{build
	void build (int l,int r,int k=1)
	{
		lt[k]=l,rt[k]=r,val[k]=inf;
		if (l==r)	return void(sum[k]=w[l]);
		build(l,lm,cl);
		build(rm,r,cr);
		sum[k]=min(sum[cl],sum[cr]);
	}
	//}}}
	//{{{pushdownl
	void pushdownl (int k)
	{
		val[cl]=lazy[k]*sum[cl],val[cr]=lazy[k]*sum[cr];
		lazy[cl]+=lazy[k],lazy[cr]+=lazy[k];
		lazy[k]=0;
	}
	//}}}
	//{{{pushdownt
	void pushdownt (int k)
	{
		tag[cl]+=tag[k],tag[cr]+=tag[k];
		val[cl]+=tag[k],val[cr]+=tag[k];
		tag[k]=0;
	}
	//}}}
	//{{{modify
	void modify (int l,int r,int v,int k=1)
	{
		if (lt[k]>=l&&rt[k]<=r){
			val[k]=sum[k]+v;
			++lazy[k],tag[k]+=v;
			return;
		}
		if (lazy[k])	pushdownl(k);
		if (tag[k])	pushdownt(k);
		if (l<=lm)	modify(l,r,v,cl);
		if (r>=rm)	modify(l,r,v,cr);
		val[k]=min(val[cl],val[cr]);
	}
	//}}}
	//{{{query
	int query (int l,int r,int k=1)
	{
		if (lt[k]>=l&&rt[k]<=r)	return val[k];
		int res=inf;
		if (lazy[k])	pushdownl(k);
		if (tag[k])	pushdownt(k);
		if (l<=lm)	res=min(res,query(l,r,cl));
		if (r>=rm)	res=min(res,query(l,r,cr));
		return res;
	}
	//}}}
}
using namespace SegmentTree;
//}}}
int main()
{
	scanf("%d%d",&n,&m);
	scanf("%s",s+1);
	for (int i=1;i<=n;++i)	cin>>w[i];
	for (int i=1;i<=m;++i){
		scanf("%s",t+1);
		Match(t,s);
	}
	sort(id+1,id+tot+1,cmp);
	int cnt=0;
	for (int i=1;i<=tot;++i){
		int cur=id[i];
		while (i+1<=tot&&l[id[i+1]]==l[cur]&&r[id[i+1]]==r[cur])	++i;
		id[++cnt]=cur;
	}
	tot=cnt;

	if (!tot)	return printf("0\n"),0;

	build(1,n);
	modify(l[id[1]],r[id[1]],0);

	for (int i=2;i<=tot;++i){
		int tl=l[id[i-1]],tr=r[id[i-1]];
		int lt=l[id[i]],rt=r[id[i]];
		int tmp=query(tl,tr);
		l[id[i]]=max(lt,tl);
		
		if (lt>tr)	modify(lt,rt,tmp);
		else if (rt>tr)	modify(tr+1,rt,tmp);
	}
	printf("%d\n",query(l[id[tot]],r[id[tot]]));
	return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

你可能感兴趣的:(OIer做题记录,DP,#,线段树优化DP)