以前,使用旋转分离轴实现过, 矩形旋转碰撞,OBB方向包围盒算法实现 。但这个算法,本身有点复杂,并且在边越多的时候计算量增长的会很快,扩展到3D层面会更加的复杂。而且这个算法碰撞后获取碰撞点的坐标有点繁琐。射线检测算法,是一个比较简单清晰的思路,实现起来复杂度也不高,碰撞点也容易获得,扩展到3D世界依然有效。
要用射线去检测碰撞,之前我们先从一个点开始。如果能够判断一个点是否和多边形碰撞,那么就可以轻易的扩展到,线和多边形,多边形和多边形的碰撞。
其核心的思路是:判断这个点,和多边形每条边的位置关系。在一个多条边围成的区域,点在一条边的右侧,这个点可能在多边形内部,也可能在外部。但是如果判断完点和每一条边的左右关系,如果在右边的边是奇数个,那么点就在内部,如果是偶数,那么点就在外部。通过这个规则,就可以判断,点和多边形的碰撞关系。有两个注意点,多边行必须是凸多边形,并且如果点落在边上,我们算在左边,这样落在边上是算在内部。
那么,如果判断一个点和一条边的位置关系。这里需要用到一个向量叉积公式。比如,点(x, y),与线 (x1, y1) (x2, y2) 的位置关系。我们先求出两个向量,(x – x1, y – y1) 和 (x2 – x1, y2 – y1)。对这两个向量做叉积的结果是 (x – x1) * (y2 – y1) – (y – y1) * (x2 – x1), 如果结果是0,那么点在线上。如果结果大于0,点在线的左边。如果结果小于0,点在线的右边。利用这个公式,我们就能判断点是否在多边形的内部还是外部。代码如下:
/**
* Test polygon contains point, true inside or false outside
* one vertex contains pair of x, y
*/
static bool TestPolygonPoint(Array(float)* vertexArr, float x, float y)
{
int preIndex = vertexArr->length - 2;
bool inside = false;
float* vertexData = AArray_GetData(vertexArr, float);
for (int i = 0; i < vertexArr->length; i += 2)
{
float vertexY = vertexData[i + 1];
float preY = vertexData[preIndex + 1];
if ((vertexY < y && preY >= y) || (preY < y && vertexY >= y))
{
float vertexX = vertexData[i];
// cross product between vector (x - vertexX, y - vertexY) and (preX - vertexX, preY - vertexY)
// result is (x - vertexX) * (preY - vertexY) - (y - vertexY) * (preX - vertexX)
// if result zero means point (x, y) on vector (preX - vertexX, preY - vertexY)
// if result positive means point on left vector
// if result negative means point on right vector
if (vertexX + (y - vertexY) / (preY - vertexY) * (vertexData[preIndex] - vertexX) <= x)
{
inside = !inside;
}
}
preIndex = i;
}
return inside;
}
在能判断,点在多边形之后,我们就能够判断,线与多边形,多边形与多边形的关系。就是判断多边形的每一个点,是否在另一个多边形里即可。当然,两个多边形都要用对方的点检测一次。相对来说比较耗时,真实的计算中,可以先用AABB或是圆形碰撞做粗略的检测过滤掉一部分,在做精确的检测。
/**
* Test polygonA each vertex in polygonB, true inside or false outside
* not test through and cross each others
*/
static bool TestPolygonPolygon(Array(float)* polygonA, Array(float)* polygonB)
{
bool inside = false;
for (int i = 0; i < polygonA->length; i += 2)
{
float x = AArray_Get(polygonA, i, float);
float y = AArray_Get(polygonA, i + 1, float);
int preIndex = polygonB->length - 2;
// test polygonB contains vertex
for (int j = 0; j < polygonB->length; j += 2)
{
float vertexY = AArray_Get(polygonB, j + 1, float);
float preY = AArray_Get(polygonB, preIndex + 1, float);
if ((vertexY < y && preY >= y) || (preY < y && vertexY >= y))
{
float vertexX = AArray_Get(polygonB, j, float);
// cross product between vector (x - vertexX, y - vertexY) and (preX - vertexX, preY - vertexY)
// result is (x - vertexX) * (preY - vertexY) - (y - vertexY) * (preX - vertexX)
// if result zero means point (x, y) on vector (preX - vertexX, preY - vertexY)
// if result positive means point on left vector
// if result negative means point on right vector
if (vertexX + (y - vertexY) / (preY - vertexY) * (AArray_Get(polygonB, preIndex, float) - vertexX) <= x)
{
inside = !inside;
}
}
preIndex = j;
}
if (inside)
{
return true;
}
}
return inside;
}
在两个多边形,碰撞之前,以上算法是可以计算的。但是存在一种互相穿透的情况,这种检测就会失效,因为可能一个多边形所有的点都在另一个的外面,但是两者确是交织的。这种情况会出现在碰撞过后,继续运动产生的情况。所以刚体的碰撞判断上面的算法即可。
但,这种交织的情况,射线法仍然可以通过某些手段进行判断的。核心的思路就是,计数左边的点,和右边的点,如果两边计数是相等的就是穿透的情况。代码如下:
/**
* Test polygonA each vertex in polygonB, true inside or false outside
* Can test through and cross each others
*
*/
static bool TestPolygonPolygonFull(Array(float)* polygonA, Array(float)* polygonB)
{
int leftCount = 0;
int rightCount = 0;
for (int i = 0; i < polygonA->length; i += 2)
{
float x = AArray_Get(polygonA, i, float);
float y = AArray_Get(polygonA, i + 1, float);
int preIndex = polygonB->length - 2;
// test polygonB contains vertex
for (int j = 0; j < polygonB->length; j += 2)
{
float vertexY = AArray_Get(polygonB, j + 1, float);
float preY = AArray_Get(polygonB, preIndex + 1, float);
if ((vertexY < y && preY >= y) || (preY < y && vertexY >= y))
{
float vertexX = AArray_Get(polygonB, j, float);
// cross product between vector (x - vertexX, y - vertexY) and (preX - vertexX, preY - vertexY)
// result is (x - vertexX) * (preY - vertexY) - (y - vertexY) * (preX - vertexX)
// if result zero means point (x, y) on vector (preX - vertexX, preY - vertexY)
// if result positive means point on left vector
// if result negative means point on right vector
if (vertexX + (y - vertexY) / (preY - vertexY) * (AArray_Get(polygonB, preIndex, float) - vertexX) <= x)
{
leftCount++;
}
else
{
rightCount++;
}
}
preIndex = j;
}
if (leftCount % 2 != 0)
{
return true;
}
}
return leftCount != 0 && leftCount == rightCount;
}
最后,线与线的碰撞,和多边形的检测有些有不同。因为两个都是线的话,就不存在一个封闭的空间,那么久不能用点在多边形内部的规则判断。但,我们仍然使用点与线的位置关系来判断。就是,两条线如果相交,那么各自的两个点,一定是在另一条线的两边的。代码如下:
/**
* Test one lineA intersect lineB
*/
static bool TestLineLine(Array(float)* lineA, Array(float)* lineB)
{
int flag[2] = {0, 0};
float vertexX1 = AArray_Get(lineB, 0, float);
float vertexX2 = AArray_Get(lineB, 2, float);
float vertexY1 = AArray_Get(lineB, 1, float);
float vertexY2 = AArray_Get(lineB, 3, float);
for (int i = 0; i < 4; i += 2)
{
float x = AArray_Get(lineA, i, float);
float y = AArray_Get(lineA, i + 1, float);
if ((vertexY1 < y && vertexY2 >= y) || (vertexY2 < y && vertexY1 >= y))
{
// cross product between vector (x - vertexX1, y - vertexY1) and (vertexX2 - vertexX1, vertexY2 - vertexY1)
// result is (x - vertexX1) * (vertexY2 - vertexY1) - (y - vertexY1) * (vertexX2 - vertexX1)
if (vertexX1 + (y - vertexY1) / (vertexY2 - vertexY1) * (vertexX2 - vertexX1) <= x)
{
flag[i >> 1] = 1;
}
else
{
flag[i >> 1] = 2;
}
}
}
// test lineA two points both sides of lineB
if (flag[0] + flag[1] == 3)
{
return true;
}
flag[0] = 0;
flag[1] = 0;
vertexX1 = AArray_Get(lineA, 0, float);
vertexX2 = AArray_Get(lineA, 2, float);
vertexY1 = AArray_Get(lineA, 1, float);
vertexY2 = AArray_Get(lineA, 3, float);
for (int i = 0; i < 4; i += 2)
{
float x = AArray_Get(lineB, i, float);
float y = AArray_Get(lineB, i + 1, float);
if ((vertexY1 < y && vertexY2 >= y) || (vertexY2 < y && vertexY1 >= y))
{
// cross product between vector (x - vertexX1, y - vertexY1) and (vertexX2 - vertexX1, vertexY2 - vertexY1)
// result is (x - vertexX1) * (vertexY2 - vertexY1) - (y - vertexY1) * (vertexX2 - vertexX1)
if (vertexX1 + (y - vertexY1) / (vertexY2 - vertexY1) * (vertexX2 - vertexX1) <= x)
{
flag[i >> 1] = 1;
}
else
{
flag[i >> 1] = 2;
}
}
}
// test lineB two points both sides of lineA
return flag[0] + flag[1] == 3;
}
通过,射线算法的判定,不仅可以判断碰撞,还能获得碰撞点的坐标,还能扩展到3D层面。可以就此扩展一个简单的物理碰撞系统了。
希望本文能对大家有所启发或者帮助!最后说一下本人从事在线教育多年,将自己的资料整合建了一个QQ群,对于有兴趣一起交流学习c/c++的初学者可以加群:941636044,里面有大神会给予解答,也会有许多的资源可以供大家学习分享,欢迎大家前来一起学习进步!