卡门――农夫约翰极其珍视的一条 Holsteins
奶牛――已经落了到 “垃圾井” 中。“垃圾井” 是农夫们扔垃圾的地方,它的深度为 D D D( 2 ≤ D ≤ 100 2 \le D \le 100 2≤D≤100)英尺。
卡门想把垃圾堆起来,等到堆得与井同样高时,她就能逃出井外了。另外,卡门可以通过吃一些垃圾来维持自己的生命。
每个垃圾都可以用来吃或堆放,并且堆放垃圾不用花费卡门的时间。
假设卡门预先知道了每个垃圾扔下的时间 t t t( 1 ≤ t ≤ 1000 1 \le t \le 1000 1≤t≤1000),以及每个垃圾堆放的高度 h h h( 1 ≤ h ≤ 25 1 \le h \le 25 1≤h≤25)和吃进该垃圾能维持生命的时间 f f f( 1 ≤ f ≤ 30 1 \le f \le 30 1≤f≤30),要求出卡门最早能逃出井外的时间,假设卡门当前体内有足够持续 10 10 10 小时的能量,如果卡门 10 10 10 小时内(不含 10 10 10 小时,维持生命的时间同)没有进食,卡门就将饿死。
第一行为两个整数, D D D 和 G G G( 1 ≤ G ≤ 100 1 \le G \le 100 1≤G≤100), G G G 为被投入井的垃圾的数量。
第二到第 G + 1 G+1 G+1 行每行包括三个整数: T T T( 1 ≤ T ≤ 1000 1 \le T \le 1000 1≤T≤1000),表示垃圾被投进井中的时间; F F F( 1 ≤ F ≤ 30 1 \le F \le 30 1≤F≤30),表示该垃圾能维持卡门生命的时间;和 H H H( 1 ≤ H ≤ 25 1 \le H \le 25 1≤H≤25),该垃圾能垫高的高度。
如果卡门可以爬出陷阱,输出一个整数,表示最早什么时候可以爬出;否则输出卡门最长可以存活多长时间。
20 4
5 4 9
9 3 2
12 6 10
13 1 1
13
【样例说明】
卡门堆放她收到的第一个垃圾: h e i g h t = 9 \mathrm{height}=9 height=9;
卡门吃掉她收到的第 2 2 2 个垃圾,使她的生命从 10 10 10 小时延伸到 13 13 13 小时;
卡门堆放第 3 3 3 个垃圾, h e i g h t = 19 \mathrm{height}=19 height=19;
卡门堆放第 4 4 4 个垃圾, h e i g h t = 20 \mathrm{height}=20 height=20。
分析题目,我们需要求的答案是时间,于是很自然而然的想到j描述高度或生命,而dp数组存放时间。很显然,这样状态既不完整,也写不出转移方程。而且dp数组存的是当前状态下最大或最小的价值,似乎也不满足。
这时候我们发现,有4个值可能成为状态,高度,生命,物品和时间,难道要dp三维的吗?
再分析题目,每个垃圾都有一个下落的时间,奶牛一定是在垃圾丢下来的时间就处理垃圾的(可以得出这样的最优的),那么物品就可以和时间关联起来了。这时候,我们可以把时间仅仅当作干扰量给剔除了。
需要注意的是,物品的使用顺序并不是随意的,必须按它们下落的时间顺序来先后处理。(这里排一下序即可)
那么j代表什么呢?
一下子我们并不能得出答案。先尝试dp[i][j]dp[i][j]代表前i件物品处理后在j血量时达到的最大高度。
值得一提的是,j血量表示奶牛在暂时不考虑时间时所得到的最大血量
据说这个是叫离线
试着写一下它的状态转移方程
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] + t r a s h [ i ] . h , d p [ i − 1 ] [ j + t r a s h [ i ] . c ] ) dp[i][j]=max(dp[i-1][j]+trash[i].h,dp[i-1][j+trash[i].c]) dp[i][j]=max(dp[i−1][j]+trash[i].h,dp[i−1][j+trash[i].c])
发现这是对的,然而我们再想想,在关于j的一重循环里面,对j的取值我们似乎并不好判断,甚至要枚举很大。
所以我们再尝试讨论dp[i][j]dp[i][j]代表前i件物品处理后在h高度时达到的最大血量。
状态转移
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] + t r a s h [ i ] . c , d p [ i − 1 ] [ j − t r a s h [ i ] . h ] ) dp[i][j]=max(dp[i-1][j]+trash[i].c,dp[i-1][j-trash[i].h]) dp[i][j]=max(dp[i−1][j]+trash[i].c,dp[i−1][j−trash[i].h])
发现这样也是对的,而且j枚举起来也比较方便,于是我们选择这种算法。
#include
using namespace std;
int d,g;
struct node{
int tim,sur,high;
}a[555];
int f[555];
bool cmp(node aa,node bb){
return aa.tim<bb.tim;
}
int main(){
cin>>d>>g;
for(int i=1;i<=g;i++){
cin>>a[i].tim>>a[i].sur>>a[i].high;
}
sort(a+1,a+1+g,cmp);
f[0]=10;
for(int i=1;i<=g;i++){
for(int j=d;j>=0;j--){
if(f[j]>=a[i].tim){
if(j+a[i].high>=d){
cout<<a[i].tim;
return 0;
}
f[j+a[i].high]=max(f[j],f[j+a[i].high]);
f[j]+=a[i].sur;
}
}
}
cout<<f[0];
return 0;
}