通过带有 Flask 的 REST API 在 Python 中部署 PyTorch

通过带有 Flask 的 REST API 在 Python 中部署 PyTorch

在本教程中,我们将使用 Flask 部署 PyTorch 模型,并公开用于模型推理的 REST API。 特别是,我们将部署预训练的 DenseNet 121 模型来检测图像。

小费

此处使用的所有代码均以 MIT 许可发布,可在 Github 上找到。

这是在生产中部署 PyTorch 模型的系列教程中的第一篇。 到目前为止,以这种方式使用 Flask 是开始为 PyTorch 模型提供服务的最简单方法,但不适用于具有高性能要求的用例。 为了那个原因:

  • 如果您已经熟悉 TorchScript,可以直接进入我们的用 C ++加载 TorchScript 模型教程。
  • 如果您首先需要在 TorchScript 上进行复习,请查看我们的 TorchScript 入门教程。

API 定义

我们将首先定义 API 端点,请求和响应类型。 我们的 API 端点将位于/predict,该端点通过包含图片的file参数接受 HTTP POST 请求。 响应将是包含预测的 JSON 响应:

{"class_id": "n02124075", "class_name": "Egyptian_cat"}

依存关系

通过运行以下命令来安装所需的依赖项:

$ pip install Flask==1.0.3 torchvision-0.3.0

简单的 Web 服务器

以下是一个简单的网络服务器,摘自 Flask 的文档

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello():
    return 'Hello World!'

将以上代码段保存在名为app.py的文件中,您现在可以通过输入以下内容来运行 Flask 开发服务器:

$ FLASK_ENV=development FLASK_APP=app.py flask run

当您在网络浏览器中访问http://localhost:5000/时,将看到Hello World!文字

我们将对上面的代码段进行一些更改,以使其适合我们的 API 定义。 首先,我们将方法重命名为predict。 我们将端点路径更新为/predict。 由于图像文件将通过 HTTP POST 请求发送,因此我们将对其进行更新,使其也仅接受 POST 请求:

@app.route('/predict', methods=['POST'])
def predict():
    return 'Hello World!'

我们还将更改响应类型,以使其返回包含 ImageNet 类 ID 和名称的 JSON 响应。 更新后的app.py文件现在为:

from flask import Flask, jsonify
app = Flask(__name__)

@app.route('/predict', methods=['POST'])
def predict():
    return jsonify({'class_id': 'IMAGE_NET_XXX', 'class_name': 'Cat'})

推理

在下一部分中,我们将重点介绍编写推理代码。 这将涉及两部分,第一部分是准备图像,以便可以将其馈送到 DenseNet;第二部分,我们将编写代码以从模型中获取实际的预测。

准备图像

DenseNet 模型要求图像为尺寸为 224 x 224 的 3 通道 RGB 图像。我们还将使用所需的均值和标准偏差值对图像张量进行归一化。 您可以在上阅读有关它的更多信息。

我们将使用torchvision库中的transforms并建立一个转换管道,该转换管道可根据需要转换图像。 您可以在上阅读有关变换的更多信息。

import io

import torchvision.transforms as transforms
from PIL import Image

def transform_image(image_bytes):
    my_transforms = transforms.Compose([transforms.Resize(255),
                                        transforms.CenterCrop(224),
                                        transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image = Image.open(io.BytesIO(image_bytes))
    return my_transforms(image).unsqueeze(0)

上面的方法以字节为单位获取图像数据,应用一系列变换并返回张量。 要测试上述方法,请以字节模式读取图像文件(首先将 …/_static/img/sample_file.jpeg 替换为计算机上文件的实际路径),然后查看是否获得张量 背部:

with open("../_static/img/sample_file.jpeg", 'rb') as f:
    image_bytes = f.read()
    tensor = transform_image(image_bytes=image_bytes)
    print(tensor)

出:

tensor([[[[ 0.4508,  0.4166,  0.3994,  ..., -1.3473, -1.3302, -1.3473],
          [ 0.5364,  0.4851,  0.4508,  ..., -1.2959, -1.3130, -1.3302],
          [ 0.7077,  0.6392,  0.6049,  ..., -1.2959, -1.3302, -1.3644],
          ...,
          [ 1.3755,  1.3927,  1.4098,  ...,  1.1700,  1.3584,  1.6667],
          [ 1.8893,  1.7694,  1.4440,  ...,  1.2899,  1.4783,  1.5468],
          [ 1.6324,  1.8379,  1.8379,  ...,  1.4783,  1.7352,  1.4612]],

         [[ 0.5728,  0.5378,  0.5203,  ..., -1.3704, -1.3529, -1.3529],
          [ 0.6604,  0.6078,  0.5728,  ..., -1.3004, -1.3179, -1.3354],
          [ 0.8529,  0.7654,  0.7304,  ..., -1.3004, -1.3354, -1.3704],
          ...,
          [ 1.4657,  1.4657,  1.4832,  ...,  1.3256,  1.5357,  1.8508],
          [ 2.0084,  1.8683,  1.5182,  ...,  1.4657,  1.6583,  1.7283],
          [ 1.7458,  1.9384,  1.9209,  ...,  1.6583,  1.9209,  1.6408]],

         [[ 0.7228,  0.6879,  0.6531,  ..., -1.6476, -1.6302, -1.6476],
          [ 0.8099,  0.7576,  0.7228,  ..., -1.6476, -1.6476, -1.6650],
          [ 1.0017,  0.9145,  0.8797,  ..., -1.6476, -1.6650, -1.6999],
          ...,
          [ 1.6291,  1.6291,  1.6465,  ...,  1.6291,  1.8208,  2.1346],
          [ 2.1868,  2.0300,  1.6814,  ...,  1.7685,  1.9428,  2.0125],
          [ 1.9254,  2.0997,  2.0823,  ...,  1.9428,  2.2043,  1.9080]]]])

预测

现在将使用预训练的 DenseNet 121 模型来预测图像类别。 我们将使用torchvision库中的一个,加载模型并进行推断。 在此示例中,我们将使用预训练的模型,但您可以对自己的模型使用相同的方法。 在此教程中查看有关加载模型的更多信息。

from torchvision import models

# Make sure to pass `pretrained` as `True` to use the pretrained weights:
model = models.densenet121(pretrained=True)
# Since we are using our model only for inference, switch to `eval` mode:
model.eval()

def get_prediction(image_bytes):
    tensor = transform_image(image_bytes=image_bytes)
    outputs = model.forward(tensor)
    _, y_hat = outputs.max(1)
    return y_hat

张量y_hat将包含预测的类 ID 的索引。 但是,我们需要一个人类可读的类名。 为此,我们需要一个类 ID 来进行名称映射。 将这个文件下载为imagenet_class_index.json,并记住它的保存位置(或者,如果您按照本教程中的确切步骤操作,请将其保存在 tutorials / _static 中)。 该文件包含 ImageNet 类 ID 到 ImageNet 类名称的映射。 我们将加载此 JSON 文件并获取预测索引的类名称。

import json

imagenet_class_index = json.load(open('../_static/imagenet_class_index.json'))

def get_prediction(image_bytes):
    tensor = transform_image(image_bytes=image_bytes)
    outputs = model.forward(tensor)
    _, y_hat = outputs.max(1)
    predicted_idx = str(y_hat.item())
    return imagenet_class_index[predicted_idx]

在使用imagenet_class_index字典之前,首先我们将张量值转换为字符串值,因为imagenet_class_index字典中的键是字符串。 我们将测试上述方法:

with open("../_static/img/sample_file.jpeg", 'rb') as f:
    image_bytes = f.read()
    print(get_prediction(image_bytes=image_bytes))

Out:

['n02124075', 'Egyptian_cat']

您应该得到如下响应:

['n02124075', 'Egyptian_cat']

数组中的第一项是 ImageNet 类 ID,第二项是人类可读的名称。

Note

您是否注意到model变量不属于get_prediction方法? 还是为什么模型是全局变量? 就内存和计算而言,加载模型可能是一项昂贵的操作。 如果我们在get_prediction方法中加载模型,则每次调用该方法时都会不必要地加载该模型。 由于我们正在构建一个 Web 服务器,因此每秒可能有成千上万的请求,因此我们不应该浪费时间为每个推断重复加载模型。 因此,我们仅将模型加载到内存中一次。 在生产系统中,必须有效利用计算以能够大规模处理请求,因此通常应在处理请求之前加载模型。

将模型集成到我们的 API 服务器中

在最后一部分中,我们将模型添加到 Flask API 服务器中。 由于我们的 API 服务器应该获取图像文件,因此我们将更新predict方法以从请求中读取文件:

from flask import request

@app.route('/predict', methods=['POST'])
def predict():
    if request.method == 'POST':
        # we will get the file from the request
        file = request.files['file']
        # convert that to bytes
        img_bytes = file.read()
        class_id, class_name = get_prediction(image_bytes=img_bytes)
        return jsonify({'class_id': class_id, 'class_name': class_name})

app.py文件现在完成。 以下是完整版本; 将路径替换为保存文件的路径,它应运行:

import io
import json

from torchvision import models
import torchvision.transforms as transforms
from PIL import Image
from flask import Flask, jsonify, request

app = Flask(__name__)
imagenet_class_index = json.load(open('/imagenet_class_index.json'))
model = models.densenet121(pretrained=True)
model.eval()

def transform_image(image_bytes):
    my_transforms = transforms.Compose([transforms.Resize(255),
                                        transforms.CenterCrop(224),
                                        transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image = Image.open(io.BytesIO(image_bytes))
    return my_transforms(image).unsqueeze(0)

def get_prediction(image_bytes):
    tensor = transform_image(image_bytes=image_bytes)
    outputs = model.forward(tensor)
    _, y_hat = outputs.max(1)
    predicted_idx = str(y_hat.item())
    return imagenet_class_index[predicted_idx]

@app.route('/predict', methods=['POST'])
def predict():
    if request.method == 'POST':
        file = request.files['file']
        img_bytes = file.read()
        class_id, class_name = get_prediction(image_bytes=img_bytes)
        return jsonify({'class_id': class_id, 'class_name': class_name})

if __name__ == '__main__':
    app.run()

让我们测试一下我们的网络服务器! 跑:

$ FLASK_ENV=development FLASK_APP=app.py flask run

我们可以使用请求库将 POST 请求发送到我们的应用:

import requests

resp = requests.post("http://localhost:5000/predict",
                     files={"file": open('/cat.jpg','rb')})

现在打印 resp.json()将显示以下内容:

{"class_id": "n02124075", "class_name": "Egyptian_cat"}

下一步

我们编写的服务器非常琐碎,可能无法完成生产应用程序所需的一切。 因此,您可以采取一些措施来改善它:

  • 端点/predict假定请求中始终会有一个图像文件。 并非所有请求都适用。 我们的用户可能发送带有其他参数的图像,或者根本不发送任何图像。
  • 用户也可以发送非图像类型的文件。 由于我们没有处理错误,因此这将破坏我们的服务器。 添加显式的错误处理路径将引发异常,这将使我们能够更好地处理错误的输入
  • 即使模型可以识别大量类别的图像,也可能无法识别所有图像。 增强实现以处理模型无法识别图像中的任何情况的情况。
  • 我们在开发模式下运行 Flask 服务器,该服务器不适合在生产中进行部署。 您可以查看本教程的,以在生产环境中部署 Flask 服务器。
  • 您还可以通过创建一个带有表单的页面来添加 UI,该表单可以拍摄图像并显示预测。 查看类似项目的演示及其源代码。
  • 在本教程中,我们仅展示了如何构建可以一次返回单个图像预测的服务。 我们可以修改我们的服务,以便能够一次返回多个图像的预测。 此外,服务流媒体库会自动将对服务的请求排队,并将请求采样到微型批次中,这些微型批次可输入模型中。 您可以查看本教程。
  • 最后,我们鼓励您在页面顶部查看链接到的有关部署 PyTorch 模型的其他教程。

你可能感兴趣的:(python,flask,pytorch)