1、sparkStreaming概述

1、sparkStreaming概述

1.1 SparkStreaming是什么

  • 它是一个可扩展,高吞吐具有容错性的流式计算框架

    吞吐量:单位时间内成功传输数据的数量

之前我们接触的spark-core和spark-sql都是处理属于离线批处理任务,数据一般都是在固定位置上,通常我们写好一个脚本,每天定时去处理数据,计算,保存数据结果。这类任务通常是T+1(一天一个任务),对实时性要求不高。

1、sparkStreaming概述_第1张图片

但在企业中存在很多实时性处理的需求,例如:双十一的京东阿里,通常会做一个实时的数据大屏,显示实时订单。这种情况下,对数据实时性要求较高,仅仅能够容忍到延迟1分钟或几秒钟。

1、sparkStreaming概述_第2张图片

实时计算框架对比

Storm

  • 流式计算框架
  • 以record为单位处理数据
  • 也支持micro-batch方式(Trident)

Spark

  • 批处理计算框架
  • 以RDD为单位处理数据
  • 支持micro-batch流式处理数据(Spark Streaming)

对比:

  • 吞吐量:Spark Streaming优于Storm
  • 延迟:Spark Streaming差于Storm

1.2 SparkStreaming的组件

  • Streaming Context
    • 一旦一个Context已经启动(调用了Streaming Context的start()),就不能有新的流算子(Dstream)建立或者是添加到context中
    • 一旦一个context已经停止,不能重新启动(Streaming Context调用了stop方法之后 就不能再次调 start())
    • 在JVM(java虚拟机)中, 同一时间只能有一个Streaming Context处于活跃状态, 一个SparkContext创建一个Streaming Context
    • 在Streaming Context上调用Stop方法, 也会关闭SparkContext对象, 如果只想仅关闭Streaming Context对象,设置stop()的可选参数为false
    • 一个SparkContext对象可以重复利用去创建多个Streaming Context对象(不关闭SparkContext前提下), 但是需要关一个再开下一个
  • DStream (离散流)
    • 代表一个连续的数据流
    • 在内部, DStream由一系列连续的RDD组成
    • DStreams中的每个RDD都包含确定时间间隔内的数据
    • 任何对DStreams的操作都转换成了对DStreams隐含的RDD的操作
    • 数据源
      • 基本源
        • TCP/IP Socket
        • FileSystem
      • 高级源
        • Kafka
        • Flume

你可能感兴趣的:(#,spark,spark,stream,spark-ml,spark)