Double DQN缓解动作价值的高估问题

1、算法:

Selection using DQN:
a ⋆ = argmax ⁡ a Q ( s t + 1 , a ; w ) . a^{\star}=\operatorname*{argmax}_{a}Q(s_{t+1},a;\mathbf{w}). a=aargmaxQ(st+1,a;w).
Evaluation using target network:
y t = r t + γ ⋅ Q ( s t + 1 , a ⋆ ; w − ) . y_{t}=r_{t}+\gamma\cdot Q(s_{t+1},a^{\star};\mathbf{w}^{-}). yt=rt+γQ(st+1,a;w).


2、算法实现:

class DoubleDQN:
    def __init__(self, dim_obs=None, num_act=None, discount=0.9):
        self.discount = discount
        self.model = QNet(dim_obs, num_act)
        self.target_model = QNet(dim_obs, num_act)
        self.target_model.load_state_dict(self.model.state_dict())

    def get_action(self, obs):
        qvals = self.model(obs)
        return qvals.argmax()

    def compute_loss(self, s_batch, a_batch, r_batch, d_batch, next_s_batch):
        # Compute current Q value based on current states and actions.
        qvals = self.model(s_batch).gather(1, a_batch.unsqueeze(1)).squeeze()
        # next state的value不参与导数计算,避免不收敛。
        next_qvals, _ = self.target_model(next_s_batch).detach().max(dim=1)
        loss = F.mse_loss(r_batch + self.discount * next_qvals * (1 - d_batch), qvals)
        return loss

你可能感兴趣的:(机器学习,python,机器学习,开发语言)