- anaconda中的python在pycharm中用不了_Pycharm中使用Anaconda
白白前
Pycharm中使用Anaconda问题:安装完Pycharm和Anaconda后,想让Pycharm能调用Anaconda中包含的各种包。这样就不用重复安装各种包了。Anaconda下载安装Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。因为包含了大量的科学包,Anaconda的下载文件比较大(约515MB)。安装Anacond
- DeepSeek混合专家模型:低成本高精度革新多语言AI应用
智能计算研究中心
其他
内容概要当前人工智能领域正经历从通用模型向垂直化、场景化应用的关键转型,DeepSeek混合专家模型(MoE)通过突破性的架构设计,为这一进程提供了技术范本。该模型采用分治策略的混合专家架构,通过动态激活670亿参数中的子模块处理特定任务,既保证了模型规模带来的知识广度,又显著降低了计算资源的冗余消耗。在此基础上,其多模态处理能力不仅覆盖80余种自然语言的高精度互译,还实现了视觉符号与文本语义的跨
- 通义灵码AI程序员
天天向上杰
AI编程AIGC人工智能
通义灵码是阿里云与通义实验室联合打造的智能编码辅助工具,基于通义大模型技术,为开发者提供多种编程辅助功能。它支持多种编程语言,包括Java、Python、Go、TypeScript、JavaScript、C/C++、PHP、C#、Ruby等200多种编码语言。通义灵码AI程序员:今年1月,通义灵码AI程序员全面上线,同时支持VSCode、JetBrainsIDEs,是国内首个真正落地的AI程序员。
- 简识MQ之Kafka、ActiveMQ、RabbitMQ、RocketMQ传递机制
天天向上杰
MQkafkaactivemqrabbitmqrocketmq
四种主流消息队列(Kafka、ActiveMQ、RabbitMQ、RocketMQ)的生产者与消费者传递信息的机制说明,以及实际使用中的注意事项和示例:1.ApacheKafka传递机制模型:基于发布-订阅模型,生产者向主题(Topic)发送消息,消费者订阅主题并消费消息。核心流程:生产者将消息发送到Kafka集群的Broker,根据分区策略(如轮询、哈希)将消息写入对应的分区(Partition
- 23. AI-概述
真上帝的左手
23.AIai人工智能
文章目录前言一、AI1.简介2.发展3.应用场景前言AI 随着技术的发展,AI正变得越来越强大和普及,其在解决复杂问题和提高人类生活质量方面的潜力日益显现。一、AIAI(ArtificialIntelligence,人工智能)1.简介 AI(ArtificialIntelligence,人工智能)是计算机科学的一个分支,旨在开发智能系统,使其能够执行通常需要人类智能的任务,例如学习、推理、问
- 【TOGAF系列】架构开发方法(ADF)第十一章
东临碣石82
架构
第11章:G阶段:实施治理11.1目标G阶段的目标是:确保实施项目符合目标架构为解决方案和任何实施驱动的架构变更请求执行适当的架构治理功能11.2输入本节定义了阶段G的输入。11.2.1企业外部参考资料架构参考资料(见TOGAF标准——架构内容)11.2.2非架构输入架构工作请求(见TOGAF标准——架构内容)能力评估(见TOGAF标准——架构内容)11.2.3架构输入■企业架构的组织模型(见TO
- 代理IP服务如何优化AI大模型训练的分布式计算效率
http
AI大模型训练就像一场接力赛,每个计算节点都是接力选手,而代理IP则是保证选手们“跑得更稳、交接更顺”的隐形教练。在分布式计算中,效率瓶颈往往不是算力本身,而是数据调度与通信协作的隐性损耗。接下来,我们从三个实操场景拆解代理IP的增效逻辑。场景一:数据采集与分发的“高速公路”分布式训练的第一步是将海量数据切分到不同计算节点。假设某团队要训练法律文书解析模型,需从20个省级法院网站抓取判例。如果所有
- 【核心算法篇十三】《DeepSeek自监督学习:图像补全预训练方案》
再见孙悟空_
「2025DeepSeek技术全景实战」算法学习计算机视觉deepSeek深度学习transformer人工智能
引言:为什么自监督学习成为AI新宠?在传统监督学习需要海量标注数据的困境下,自监督学习(Self-SupervisedLearning)凭借无需人工标注的特性异军突起。想象一下,如果AI能像人类一样通过观察世界自我学习——这正是DeepSeek图像补全方案的技术哲学。根据,自监督学习通过设计巧妙的"预训练任务"(PretextTask),让模型在无标签数据中自动学习图像语义特征。而图像补全正是这类
- HarmonyOS Next智能语音助手的语音合成与模型优化实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建智能语音助手过程中语音合成与模型优化技术的实战应用,基于实际开发经验进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、语音助手功能需求与架构规划(一)功能需求梳理语音指令识别需求智能语音助手需要准确识别用户的语音指令
- 【大语言模型_3】ollama本地加载deepseek模型后回答混乱问题解决
没枕头我咋睡觉
大语言模型语言模型人工智能自然语言处理
背景:本地下载了DeepSeek-R1-Distill-Qwen-7B模型后,通过ollamacreateDeepSeek-R1-Distill-Qwen-7B-fds7b.mf加载模型启动后回答混乱,无法使用。解决方法重新下载模型,选择了DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf重新编写ds7b.mf文件,文件内容如下:FROM/root/zml/DeepSe
- 国外7个最佳大语言模型 (LLM) API推荐
程序员后端
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- SMT贴片加工报价构成要素与成本优化策略解析
安德胜SMT贴片
其他
内容概要在现代电子制造领域,SMT贴片加工报价的精准核算直接影响企业供应链成本控制效能。本文通过结构化分析框架,系统解构报价体系的五大核心要素,并建立可操作的优化模型。研究路径覆盖从基材选型到生产规划的完整价值链,重点揭示各环节成本动因的相互作用机制。为直观呈现报价要素的关联性,特构建以下参数对照表:要素类别成本占比范围关键波动因素优化切入点PCB基材成本15-25%层数/板材类型/表面处理工艺标
- OpenAI揭示o3的推理过程,以弥合与DeepSeek-R1的差距
c++服务器开发
人工智能deepseek
生成式人工智能开发商OpenAI公司首席执行官SamAltman最近在RedditAMA问答活动中承认,该公司在开源软件研究方面站在了“历史错误的一边”。尽管OpenAI公司尚未发布其开源模型,但已经迈出了提高透明度的第一步。正如该公司在其X帐号上所宣布的那样,其最新的推理模型o3-mini现在展示了其思维链(CoT)跟踪的更详细版本。此前,OpenAI公司的推理模型仅展示了CoT的高级概述,这使
- 国鑫DeepSeek 671B本地部署方案:以高精度、高性价比重塑AI推理新标杆
Gooxi国鑫
人工智能服务器
随着DeepSeek大模型应用火爆全球,官方服务器总是被挤爆。而且基于企业对数据安全、网络、算力的更高需求,模型本地化部署的需求日益增长,如何在有限预算内实现高效、精准的AI推理能力,成为众多企业的核心诉求。国鑫作为深耕AI领域的技术先锋,推出基于4台48GRTX4090或8台24GRTX4090服务器的2套DeepSeek“满血”版本地部署方案,以FP16高精度、高性价比、强扩展性三大优势,为企
- 教你本地复现Deep Research:DeepSeek R1+ LangChain+Milvus
大模型入门教程
langchain人工智能大模型学习大模型DeepSeekAI大模型大模型教程
金融机构、律所、科研党的福音来了!不久前,OpenAI新推出了一项名叫DeepResearch(深度研究)的功能,迅速风靡全球。我们可以将其理解为大模型+超级搜索+研究助理的三合一。在这项功能里,用户输入查询问题后,只需要选择DeepResearch选项,OpenAIo3就能自动查找分析数百优质在线资源,并对其进行综合整理并加工,为用户生成一份具备专业分析师水准的综合报告。不仅内容生成更加详实,而
- “深入浅出”系列之QT:(10)Qt接入Deepseek
我真不会起名字啊
qt开发语言
项目配置:在.pro文件中添加网络模块:QT+=corenetworkAPI配置:将apiUrl替换为实际的DeepSeekAPI端点将apiKey替换为你的有效API密钥根据API文档调整请求参数(模型名称、温度值等)功能说明:使用QNetworkAccessManager处理HTTP请求自动处理JSON序列化/反序列化支持异步请求处理包含基本的错误处理扩展建议:添加更完善的错误处理(HTTP状
- 大模型产品Deepseek(九)、LMstudio + AnythingLLM提交文件、网页内容,回复更专业准确
伯牙碎琴
大模型DeepSeek大模型知识库LMstudio嵌入数据联网查询
使用LMstudio和AnythingLLM向DeepSeek提交数据以提高回复的准确性在本篇文章中,我们将介绍如何使用LMstudio和AnythingLLM工具将文件或网页内容提交给DeepSeek,确保它能够提供更专业和精准的回答。这种方式特别适合那些无法使用Ollama部署但有数据投喂需求的场景。一.准备工作在开始之前,确保您已经安装了LMstudio和AnythingLLM工具,并且De
- 第26篇:pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA使用lora微调的模型异构个性化联邦学习
还不秃顶的计科生
联邦学习深度学习人工智能开发语言
第一部分:解决的问题联邦学习(FederatedLearning,FL)是一种分布式机器学习方法,允许客户端在本地数据上训练模型,同时通过中心服务器共享学习成果。传统FL框架假设客户端使用相同的模型结构(模型同构),但在实际中可能面对:统计异质性:客户端的数据分布不均(non-IID)。资源异质性:客户端硬件资源有限。模型异质性:客户端可能拥有不同的模型结构。模型异构的个性化联邦学习(MHPFL)
- 零基础学会asp.net做AI大模型网站/小程序十六:专栏总结
借雨醉东风
asp.net小程序后端
本专栏以实战为主,轻理论。如果哪里有不太懂的,可关注博主后加个人微信(平台规定文章中不能贴联系方式,需先关注博主,再加微信),后续一起交流学习。-------------------------------------正文----------------------------------------目录本专栏总结后续方向项目简介项目结构使用方法项目地址关键特点LLaMA机器学习简介使用LLaMA
- GPT (Generative Pre-trained Transformer)
彬彬侠
自然语言处理gpttransformer预训练NLP自然语言处理
GPT(GenerativePre-trainedTransformer)是由OpenAI提出的一个基于Transformer架构的自回归语言模型。GPT模型通过大规模无监督预训练,使用大量的文本数据进行学习,然后再进行微调(fine-tuning)来适应具体的下游任务。GPT的设计目标是能够理解和生成自然语言文本,并且它以其出色的自然语言生成能力在多个领域取得了显著的成果。GPT的基本原理GPT
- YOLOv8到YOLOv11:深度解析目标检测架构的演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉目标检测YOLO神经网络深度学习
YOLOv8到YOLOv11:深度解析目标检测架构的演进在计算机视觉领域,YOLO(YouOnlyLookOnce)系列模型一直是实时目标检测领域的佼佼者。从2015年的YOLOv1到2024年的YOLOv11,这一系列模型经历了快速的迭代和发展,不断刷新着目标检测的性能和效率。然而,由于部分YOLO版本缺乏详细的学术论文和架构图,研究人员和开发者在理解这些模型的工作原理时往往面临挑战。最近,一篇
- 国内那么多的低代码平台,究竟哪家比较强?
有颜有货
低代码平台低代码低代码低代码平台
国内低代码平台哪家强?本人摸索低代码5年多,体验过几十家低代码平台,下面通过2张功能对比图,3K字内容详细告诉你:国内低代码到底哪家强。如果你觉得我的分析对你有一定帮助,还请点赞收藏支持一下,争取能让更多人看到并帮助需要的人。话不多说,先上图。国内主流低代码产品功能对比。(图二在回答末尾)一、织信Informat(企业级低代码平台)功能清单驱动方式:模型驱动字段支持:35种字段,同时支持通过js脚
- 【架构】分层架构 (Layered Architecture)
_君莫笑
软件架构架构c++
一、分层模型基础理论模型是一种常见的软件设计架构,它将软件系统按照功能划分为不同的层次,每个层次都有特定的职责和功能,层与层之间存在清晰的依赖关系。这种架构有助于提高软件的可
- 深入理解DAG任务调度系统:核心原理与实现
AI天才研究院
计算Python实战编程实践python算法dag
1.背景介绍随着大数据、人工智能等领域的发展,任务调度系统的重要性日益凸显。DirectedAcyclicGraph(DAG)任务调度系统是一种常见的任务调度系统,它可以有效地解决多个依赖关系复杂的任务调度问题。本文将深入探讨DAG任务调度系统的核心原理和实现,为读者提供一个深入的理解。1.1背景介绍1.1.1任务调度系统简介任务调度系统是计算机科学中一个重要的研究领域,它主要关注于在并行计算系统
- OpenMetadata MySQL 数据库使用率提取管道实现解析
10年JAVA大数据技术研究者
数据治理数据库mysqlopenmetadata源码分析
目录架构概述核心组件源码分析使用率指标定义数据提取流程图源码类图配置与扩展指南架构概述OpenMetadata通过可插拔的元数据摄取框架实现对MySQL使用率数据的采集,核心流程包含三个阶段:数据采集层:从MySQLperformance_schema和sysschema获取原始指标指标处理层:将原始数据转换为统一的使用率指标模型数据存储层:将处理后的指标持久化到OpenMetadata服务核心组
- 华为昇腾服务器部署DeepSeek模型实战
gzroy
人工智能语言模型
在华为的昇腾服务器上部署了DeepSeekR1的模型进行验证测试,记录一下相关的过程。服务器是配置了8块910B3的显卡,每块显卡有64GB显存,根据DeepSeekR1各个模型的参数计算,如果部署R1的Qwen14B版本,需要1张显卡,如果是32B版本,需要2张,Llama70B的模型需要4张显卡。如果是R1全参数版本,则需要32张显卡,也就是4台满配的昇腾服务器。这里先选择32B的模型进行部署
- 【系统架构设计师】论文:论信息系统的安全体系
数据知道
系统架构安全系统架构设计师软考高级论文架构
论文:论信息系统的安全体系文章目录摘要正文总结摘要2023年2月,我参加了某水库管理信息系统项目的实施。通过系统的实施和运行,实现防汛、供水、发电、闸门监控、水文等各种数据的采集、分析、存储,并通过网络及时地向有关部门汇报,以便相关领导进行调度指挥,为领导决策提供大力支持,为业务人员办公提供服务。系统的应用将有效提高某市政府水库管理所的工作效率。我作为该项目的项目负责人,主要负责项目管理,同时负责
- 腾讯云放大招:3 行代码让 DeepSeek “入住” 微信小程序
BuluAI
腾讯云微信小程序云计算
小程序开发的革命性突破近日,技术圈迎来一则重磅消息——腾讯云推出全新功能,仅需3行代码,就能让DeepSeek大模型“入住”微信小程序,这无疑为开发者们带来了一场革命性的变革。在过去,将大模型能力集成到微信小程序中,过程复杂繁琐,代码量庞大,高门槛让众多开发者望而却步。但如今,腾讯云的这一创新举措,直接将难题“秒解”。开发者们只需轻松敲下3行代码,即可实现DeepSeek大模型在微信小程序中的接入
- 淘宝/天猫店铺订单数据导出、销售报表设计与数据分析指南
不会玩技术的技术girl
API数据分析人工智能数据库
在电商运营中,订单数据是店铺运营的核心资产之一。通过对订单数据的导出、整理和分析,商家可以更好地了解销售情况、优化运营策略、提升客户满意度,并制定科学的业务决策。本文将详细介绍淘宝/天猫店铺订单数据的导出方法、销售报表的设计思路以及数据分析的实用技巧,帮助电商从业者高效管理店铺数据。一、订单数据导出(一)手动导出订单数据淘宝和天猫平台提供了手动导出订单的功能,适用于数据量较小或临时性需求的场景。商
- ollama的docker 使用教程
贾斯汀玛尔斯
数据湖AIDocker容器dockereureka容器
好的,下面是Ollama在Docker中的使用教程。我将详细描述如何在Docker容器中运行Ollama,包括安装、配置和常用操作。OllamaDocker使用教程Ollama可以通过Docker运行,提供了一个简洁且隔离的环境来使用AI模型。本文将引导你如何在Docker中设置和使用Ollama。目录前提条件拉取OllamaDocker镜像启动Ollama容器基本命令操作停止容器<
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息