环境
2.11.8
2.2.0
1.5.0
测试代码
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.kudu.client._
import collection.JavaConverters._
object KuduApp {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().appName("KuduApp").master("local[2]").getOrCreate()
//Read a table from Kudu
val df = spark.read
.options(Map("kudu.master" -> "10.19.120.70:7051", "kudu.table" -> "test_table"))
.format("kudu").load
df.schema.printTreeString()
// // Use KuduContext to create, delete, or write to Kudu tables
// val kuduContext = new KuduContext("10.19.120.70:7051", spark.sparkContext)
//
//
// // The schema is encoded in a string
// val schemalString="id,age,name"
//
// // Generate the schema based on the string of schema
// val fields=schemalString.split(",").map(filedName=>StructField(filedName,StringType,nullable =true ))
// val schema=StructType(fields)
//
//
// val KuduTable = kuduContext.createTable(
// "test_table", schema, Seq("id"),
// new CreateTableOptions()
// .setNumReplicas(1)
// .addHashPartitions(List("id").asJava, 3)).getSchema
//
// val id = KuduTable.getColumn("id")
// print(id)
//
// kuduContext.tableExists("test_table")
}
}
现象:通过spark sql 操作报如下错误:
Exception in thread "main" java.lang.ClassNotFoundException: Failed to find data source: kudu. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:549)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:301)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:146)
at cn.zhangyu.KuduApp$.main(KuduApp.scala:18)
at cn.zhangyu.KuduApp.main(KuduApp.scala)
Caused by: java.lang.ClassNotFoundException: kudu.DefaultSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
at scala.util.Try.orElse(Try.scala:84)
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:533)
... 7 more
而通过KuduContext是可以操作的没有报错,代码为上面注解部分
解决思路
查询kudu官网:https://kudu.apache.org/docs/developing.html
官网中说出了版本的问题:
如果将Spark 2与Scala 2.11一起使用,请使用kudu-spark2_2.11工件。
kudu-spark版本1.8.0及更低版本的语法略有不同。有关有效示例,请参阅您的版本的文档。可以在发布页面上找到版本化文档。
spark-shell --packages org.apache.kudu:kudu-spark2_2.11:1.9.0
看到了 官网使用的是1.9.0的版本.
但是但是但是
官网下面说到了下面几个集成问题:
- Spark 2.2+在运行时需要Java 8,即使Kudu Spark 2.x集成与Java 7兼容。Spark 2.2是Kudu 1.5.0的默认依赖版本。
- 当注册为临时表时,必须为名称包含大写或非ascii字符的Kudu表分配备用名称。
- 包含大写或非ascii字符的列名的Kudu表不能与SparkSQL一起使用。可以在Kudu中重命名列以解决此问题。
- <>并且OR谓词不会被推送到Kudu,而是由Spark任务进行评估。只有LIKE带有后缀通配符的谓词才会被推送到Kudu,这意味着它LIKE "FOO%"被推下但LIKE "FOO%BAR"不是。
- Kudu不支持Spark SQL支持的每种类型。例如, Date不支持复杂类型。
- Kudu表只能在SparkSQL中注册为临时表。使用HiveContext可能无法查询Kudu表。
那就很奇怪了我用的1.5.0版本报错为:找不到类,数据源有问题
但是把kudu改成1.9.0 问题解决
运行结果:
root
|-- id: string (nullable = false)
|-- age: string (nullable = true)
|-- name: string (nullable = true)
Spark集成最佳实践
每个群集避免多个Kudu客户端。
一个常见的Kudu-Spark编码错误是实例化额外的KuduClient对象。在kudu-spark中,a KuduClient属于KuduContext。Spark应用程序代码不应创建另一个KuduClient连接到同一群集。相反,应用程序代码应使用KuduContext访问KuduClient使用
KuduContext#syncClient。
// Use KuduContext to create, delete, or write to Kudu tables
val kuduContext = new KuduContext("10.19.120.70:7051", spark.sparkContext)
val list = kuduContext.syncClient.getTablesList.getTablesList
if (list.iterator().hasNext){
print(list.iterator().next())
}
要诊断KuduClientSpark作业中的多个实例,请查看主服务器的日志中的符号,这些符号会被来自不同客户端的许多GetTableLocations或 GetTabletLocations请求过载,通常大约在同一时间。这种症状特别适用于Spark Streaming代码,其中创建KuduClient每个任务将导致来自新客户端的主请求的周期性波。
Spark操作kudu(Scala demo)
package cn.zhangyu
import org.apache.kudu.spark.kudu._
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.slf4j.LoggerFactory
import org.apache.kudu.client._
import collection.JavaConverters._
object SparkTest {
//kuduMasters and tableName
val kuduMasters = "192.168.13.130:7051"
val tableName = "kudu_spark_table"
//table column
val idCol = "id"
val ageCol = "age"
val nameCol = "name"
//replication
val tableNumReplicas = Integer.getInteger("tableNumReplicas", 1)
val logger = LoggerFactory.getLogger(SparkTest.getClass)
def main(args: Array[String]): Unit = {
//create SparkSession
val spark = SparkSession.builder().appName("KuduApp").master("local[2]").getOrCreate()
//create kuduContext
val kuduContext = new KuduContext(kuduMasters,spark.sparkContext)
//schema
val schema = StructType(
List(
StructField(idCol, IntegerType, false),
StructField(nameCol, StringType, false),
StructField(ageCol,StringType,false)
)
)
var tableIsCreated = false
try{
// Make sure the table does not exist
if (kuduContext.tableExists(tableName)) {
throw new RuntimeException(tableName + ": table already exists")
}
//create
kuduContext.createTable(tableName, schema, Seq(idCol),
new CreateTableOptions()
.addHashPartitions(List(idCol).asJava, 3)
.setNumReplicas(tableNumReplicas))
tableIsCreated = true
import spark.implicits._
//write
logger.info(s"writing to table '$tableName'")
val data = Array(Person(1,"12","zhangsan"),Person(2,"20","lisi"),Person(3,"30","wangwu"))
val personRDD = spark.sparkContext.parallelize(data)
val personDF = personRDD.toDF()
kuduContext.insertRows(personDF,tableName)
//useing SparkSQL read table
val sqlDF = spark.sqlContext.read
.options(Map("kudu.master" -> kuduMasters, "kudu.table" -> tableName))
.format("kudu").kudu
sqlDF.createOrReplaceTempView(tableName)
spark.sqlContext.sql(s"SELECT * FROM $tableName ").show
//upsert some rows
val upsertPerson = Array(Person(1,"10","jack"))
val upsertPersonRDD = spark.sparkContext.parallelize(upsertPerson)
val upsertPersonDF = upsertPersonRDD.toDF()
kuduContext.updateRows(upsertPersonDF,tableName)
//useing RDD read table
val readCols = Seq(idCol,ageCol,nameCol)
val readRDD = kuduContext.kuduRDD(spark.sparkContext, tableName, readCols)
val userTuple = readRDD.map { case Row( id: Int,age: String,name: String) => (id,age,name) }
println("count:"+userTuple.count())
userTuple.collect().foreach(println(_))
//delete table
kuduContext.deleteTable(tableName)
}catch {
// Catch, log and re-throw. Not the best practice, but this is a very
// simplistic example.
case unknown : Throwable => logger.error(s"got an exception: " + unknown)
throw unknown
} finally {
// Clean up.
if (tableIsCreated) {
logger.info(s"deleting table '$tableName'")
kuduContext.deleteTable(tableName)
}
logger.info(s"closing down the session")
spark.close()
}
}
}
case class Person(id: Int,age: String,name: String)