62.不同路径
自己做
思路:
从起始点出发,起始点所在的行和列都仅有一条路径,因为只能向右或者向下运动,所以预先初始化
之后,从起始点的斜下方开始计算路径,每个点的路径数量可以由其上方和左方的路径之和得到
也就是说本次状态的计算需要依靠上一次的状态,考虑动态规划
代码:
python
class Solution(object):
def uniquePaths(self, m, n):
"""
:type m: int
:type n: int
:rtype: int
"""
# 1.
dp = [[0 for _ in range(n)] for _ in range(m)]
3.
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
# 4.
for i in range(1, m):
for j in range(1, n):
# 2.
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]
代码随想录
思路:
深搜
这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。
注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!
如图举例:
此时问题就可以转化为求二叉树叶子节点的个数,代码如下:
class Solution {
private:
int dfs(int i, int j, int m, int n) {
if (i > m || j > n) return 0; // 越界了
if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
}
public:
int uniquePaths(int m, int n) {
return dfs(1, 1, m, n);
}
};
大家如果提交了代码就会发现超时了!
来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。
这棵树的深度其实就是m+n-1(深度按从1开始计算)。
那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)
所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。
动态规划
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
按照动规五部曲来分析:
确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。
那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
dp数组的初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
所以初始化代码为:
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
确定遍历顺序
这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
举例推导dp数组
python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 创建一个二维列表用于存储唯一路径数
dp = [[0] * n for _ in range(m)]
# 设置第一行和第一列的基本情况
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
# 计算每个单元格的唯一路径数
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
# 返回右下角单元格的唯一路径数
return dp[m - 1][n - 1]
数论方法
在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。
在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。
那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。
那么这就是一个组合问题了。
那么答案,如图所示:
求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。
计算组合问题的代码还是有难度的,特别是处理溢出的情况!
代码
python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
numerator = 1 # 分子
denominator = m - 1 # 分母
count = m - 1 # 计数器,表示剩余需要计算的乘积项个数
t = m + n - 2 # 初始乘积项
while count > 0:
numerator *= t # 计算乘积项的分子部分
t -= 1 # 递减乘积项
while denominator != 0 and numerator % denominator == 0:
numerator //= denominator # 约简分子
denominator -= 1 # 递减分母
count -= 1 # 计数器减1,继续下一项的计算
return numerator # 返回最终的唯一路径数
63. 不同路径 II
自己做
思路:
这道题细心一点还是可以做对的
相比不同路径,本题增加了障碍,如果边上有障碍,那么障碍及障碍后面的位置都走不通
其次,如果障碍在斜下方,那么经过此障碍的路径都将不存在
按照条件一点一点的写,可以写出来代码
代码:
python
class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
# 1.
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [[0 for _ in range(n)] for _ in range(m)]
3.
if obstacleGrid[0][0] == 1:
return 0
else:
dp[0][0] = 1
for i in range(1, m):
if obstacleGrid[i][0] == 1:
dp[i][0] = 0
else:
if dp[i-1][0] == 0:
dp[i][0] = 0
else:
dp[i][0] = 1
for j in range(1, n):
if obstacleGrid[0][j] == 1:
dp[0][j] = 0
else:
if dp[0][j-1] == 0:
dp[0][j] == 0
else:
dp[0][j] = 1
print(dp)
# 4.
for i in range(1, m):
for j in range(1, n):
# 2.
if obstacleGrid[i][j] == 1:
obstacleGrid[i][j] == 0
else:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]
代码随想录
思路:
动规五部曲:
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
所以代码为:
if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
代码应为:
vector> dp(m, vector(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) continue;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
对应的dp table 如图:
如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
return 0
dp = [[0] * n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0] == 0: # 遇到障碍物时,直接退出循环,后面默认都是0
dp[i][0] = 1
else:
break
for j in range(n):
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]