直接上代码:
import numpy as np
import cv2
import glob
# 函数功能:通过双目相机的内外参数和畸变系数进行立体校正,获得去畸变后的双目参数
def get_stereo_rectify_image_from_camera_parameters(P, gray_imageL, gray_imageR):
# 左、右相机内参
mtx_l = np.array([[P[0], 0, P[1], 0],
[0, P[2], P[3], 0],
[0, 0, 1, 0]])
mtx_r = np.array([[P[4], 0, P[5], 0],
[0, P[6], P[7], 0],
[0, 0, 1, 0]])
# 右相机到左相机的旋转矩阵、平移矩阵
R_lr = np.array([[P[8], P[9], P[10]],
[P[11], P[12], P[13]],
[P[14], P[15], P[16]]])
T_lr = np.array([[P[17]],
[P[18]],
[P[19]]])
cameraMatrixL = mtx_l[:, 0:3]
cameraMatrixR = mtx_r[:, 0:3]
# 左、右相机畸变
distCoeffL = np.array([P[20], P[21], P[22], P[23], P[24]])
distCoeffR = np.array([P[25], P[26], P[27], P[28], P[29]])
# 左相机到左相机的投影矩阵
R_ll = ([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
T_ll = ([[0], [0], [0]])
temp_R_ll = np.append(R_ll, T_ll, axis=1)
_temp_R_ll = np.row_stack((temp_R_ll, [0, 0, 0, 1]))
P0 = np.dot(mtx_l, _temp_R_ll)
# 左相机到右相机的投影矩阵
temp_R_lr = np.append(R_lr, T_lr, axis=1)
_temp_R_lr = np.row_stack((temp_R_lr, [0, 0, 0, 1]))
P1 = np.dot(mtx_r, _temp_R_lr)
# 图像的分辨率
imageSize = (gray_imageL.shape[1], gray_imageL.shape[0])
# # 立体校正
Rl, Rr, Pl, Pr, Q, validROIL, validROIR = cv2.stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R_lr, T_lr, flags=0, alpha=0, newImageSize=(0, 0))
# 计算更正remap
mapLx, mapLy = cv2.initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pl, imageSize, cv2.CV_32FC1)
mapRx, mapRy = cv2.initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, cv2.CV_32FC1)
# 经过remap之后,左右相机的图像已经共面并且行对齐
rectifyImageL = cv2.remap(gray_imageL, mapLx, mapLy, cv2.INTER_LINEAR)
rectifyImageR = cv2.remap(gray_imageR, mapRx, mapRy, cv2.INTER_LINEAR)
# 返回值分别为:左、右相机投影矩阵,校正后的左、右相机投影矩阵,校正后的左、右相机图像
return P0, P1, Pl, Pr, rectifyImageL, rectifyImageR
# 函数功能:通过双目相机的参数和相机拍摄的光斑的左、右相机图像,计算出光斑三维坐标
def cal_coordinate_from_spot_centroid(cameraParameters, imageL, imageR):
# 读取相机拍摄的光斑图像,及相机内外参的txt文件
imagesL = glob.glob(imageL)
imagesR = glob.glob(imageR)
file = open(cameraParameters, 'r')
P = (np.array([x.strip() for x in file.readlines()])).astype(np.float64)
for imgL in imagesL:
listL = []
listR = []
grayImageL = cv2.imread(imgL, 0)
imgR = imgL.replace('L', 'R')
grayImageR = cv2.imread(imgR, 0)
# 对左右相机拍摄的图像进行立体校正处理
P0, P1, Pl, Pr, rectifyimgL, rectifyimgR = get_stereo_rectify_image_from_camera_parameters(P, grayImageL, grayImageR)
# 阈值分割
ret, thr = cv2.threshold(rectifyimgL, 175, 255, cv2.THRESH_BINARY)
# 找到图像轮廓并画出来
contoursL, hie = cv2.findContours(thr, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(rectifyimgL, contours=contoursL, contourIdx=-1, color=[0, 0, 255], thickness=2)
contoursL = [cnt for cnt in contoursL if cv2.contourArea(cnt) > 30]
# 计算图像质心坐标
for index in range(len(contoursL)):
ML = cv2.moments(contoursL[index])
cxL = round(ML['m10'] / ML['m00'], 3)
cyL = round(ML['m01'] / ML['m00'], 3)
centerlistL = [cxL, cyL]
listL.append(centerlistL)
ret, thr = cv2.threshold(rectifyimgR, 175, 255, cv2.THRESH_BINARY)
contoursR, hie = cv2.findContours(thr, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(rectifyimgR, contours=contoursR, contourIdx=-1, color=[0, 0, 255], thickness=2)
contoursR = [cnt for cnt in contoursR if cv2.contourArea(cnt) > 30]
for index in range(len(contoursR)):
MR = cv2.moments(contoursR[index])
cxR = round(MR['m10'] / MR['m00'], 3)
cyR = round(MR['m01'] / MR['m00'], 3)
centerlistR = [cxR, cyR]
listR.append(centerlistR)
# 计算光斑的三维坐标
for i in range(len(listL)):
s1 = np.array(cv2.triangulatePoints(Pl, Pr, np.array(listL[i]), np.array(listR[i]))).T
point_3D = s1[0][:-1] / np.max(s1[0][-1])
point_3D = ("%.3f" % float(point_3D[0]), "%.3f" % float(point_3D[1]), "%.3f" % float(point_3D[2]))
print('光斑{}的三维空间坐标为:{}'.format(i + 1, point_3D))
if __name__ == "__main__":
# 读取相机内外参的txt文件,包括双目相机的内外参和畸变参数
camera_parameters = '0524.txt'
# 读取相机拍摄的光斑图像
image_L = 'L1.bmp'
image_R = 'R1.bmp'
cal_coordinate_from_spot_centroid(camera_parameters, image_L, image_R)
代码中的示例图片和参数详见链接。