目录
一、Redis 高可用的相关知识
1)什么是高可用
2)Redis的高可用技术
3)持久化的功能
4)redis持久化的方式
二、RDB持久化
1)RDB持久化的触发方式
(1)手动触发
(2)自动触发
(3)其他自动触发机制
2)bgsave执行流程
3)启动时加载
三、AOF持久化
1)AOF的开启配置
2)执行流程
(1)命令追加
(2) 文件写入(write)和文件同步(sync)
(3)文件重写(rewrite)
(4)文件重写压缩AOF文件的原因
(5)文件重写的触发方式
3)AOF文件重写的流程
四、RDB和AOF的优缺点对比
1)RDB的优缺点
优点:
缺点:
2)AOF的优缺点
五、Redis性能管理
1)查看redis的内存使用情况
2)内存碎片
内存碎片产生的原因
内存碎片率对redis的影响
解决碎片率过大的方法
3)内存使用率
4)内回收key
六、redis的优化策略
1)设置Redis客户端连接的超时时间
2) 设置 redis客户端最大连接数
3) 设置redis自动碎片清理
4) 设置redis最大内存阈值
5) 设置key回收策略
七、redis雪崩、穿透、击穿的原因和解决方案
1)redis雪崩
2)redis 击穿
3)缓存穿透
在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和cluster集群,下面分别说明它们的作用,以及解决了什么样的问题
缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制
缺陷:写操作无法负载均衡;存储能力受到单机的限制
持久化的功能: Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。
灾难备份:一般做异地备份,发生灾难后切换节点。
由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持 久化仍然有其用武之地。(RDB体积小,恢复速度更快。对性能影响较小。)
RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据
save命令和bgsave命令都可以生成RDB文件。
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。
bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。
在自动触发RDB持久化时,Redis 也会选择bgsave而不是save来进行持久化
自动触发最常见的情况是在配置文件中通过 save m n 指定当m秒内发生n次变化时,会触发bgsave
vim /etc/redis/6379.conf #编辑配置文件
----219行--以下三个save条件满足任意一一个时,都会引起bgsave的调用
save 900 1 #当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 #当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 #当时间到60秒时,如果redis数据发生了至少10000次变化, 则执行bgsave
----242行--是否开启RDB文件压缩
rdbcompression yes
----254行--指定RDB文件名
dbfilename dump.rdb
----264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
除了savemn以外,还有一些其他情况会触发bgsave:
在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
执行shutdown命令时,自动执行rdb持久化
(1)Redis父进程首先判断:当前是否在执行save,或 bgsave/ bgrewriteaof 的子进程,如果在执行则bgsave命令直接返回。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令。
(3)父进程fork后,bgsave 命令返回"Background saving started" 信息并不再阻塞父进程,并可以响应其他命令。
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换。(原子替换:文件整体替换,要么都发生,要么都不发生)
(5)子进程发送信号给父进程表示完成,父进程更新统计信息。
Redis服务器默认开启RDB,关闭AOF的, 要开启AOF,需要在/etc/redis/6379.conf
配置文件中配置
vim /etc/redis/6379.conf
----700行---修改,开启AOF
appendonly yes
----704行---指定AOF文件名称
appendfilename "appendonly.aof"
----796行---是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
#Redis恢复时,发现AOF文件的末尾被截断了,会忽略最后一条可能存在问题的指令。默认值yes。即在aof写入时,可能发生redis机器运行崩溃,AOF文件的末尾被截断了,这种情况下,yes会继续执行并恢复尽量多的数据,而no会直接恢复失败报错退出。
/etc/init.d/redis_6379 restart #重启redis
ls /var/lib/redis/6379/ #查看是否生成了aof文件
由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。
AOF的执行流程包括:
Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:
AOF缓存区的同步文件策略存在三种同步方式,它们分别是:
vim /etc/redis/6379.conf
----729行----
729 # appendfsync always
730 appendfsync everysec
731 # appendfsync no
------------------------以下是注释----------------------------------------------------
● appendfsync always:
#命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。
这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;
即便是使用固态硬盘(SSD) ,每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
(安全性高,性能低。)
● appendfsync no:
#命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;
同步由操作系统负责,通常同步周期为30秒。
这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
(当缓冲区被填满或超过了指定时限后,才将缓冲区的数据写入到硬盘里。性能高,但安全性低。)
● appendfsync everysec:
#命令写入aof_buf后调用系统write操作,write完成后线程返回; fsync同步文件操作由专门的线程每秒调用一次。
everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。
(同时保证了数据安全和性能的需求)
注意:
重写会消耗性能,影响业务,不能在业务高峰期进行重写。所以一般会关闭自动重写,由定时任务在每天的某一时刻定时执行重写功能。
rewrite之后aof文件会保存keys的最后状态,清除掉之前冗余的,来缩小这个文件
通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度
只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作
注意:
重写由父进程fork子进程进行
重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存
vim /etc/redis/6379.conf
----771行----
771 auto-aof-rewrite-percentage 100
772 auto-aof-rewrite-min-size 64mb
-----------------------以下是注释--------------------------------
● auto-aof-rewrite-percentage 100
#文件的大小超过基准百分之多少后触发bgrewriteaof。默认这个值设置为100,意味着当前aof是基准大小的两倍的时候触发bgrewriteaof。把它设置为0可以禁用自动触发的功能。
#即当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作。
#注意:例如上次文件达到100M进行重写,那么这次需要达到200M时才进行重写。文件需要越来越大,所以一般不使用自动重写。如果使用自动重写,需要定期手动重写干预一次,让文件要求恢复到100M。
● auto-aof-rewrite-min-size 64mb #当文件大于64M时才会进行重写
#当前aof文件大于多少字节后才触发。
#当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF
(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行。(正常情况下使用AOF就会使用AOF进行记录,不会使用RDB。主从复制时会自动触发bgsave命令)
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的(无法接受任何客户端的请求)
(3.1)父进程fork后,bgrewriteaof 命令返回"Background append only file rewrite started" 信息并不再阻塞父进程,并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_ buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_ buf和aof_rewirte_ buf两个缓冲区。 (保证新写入的数据不丢失)
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致
(5.3)使用新的AOF文件替换老文件,完成A
OF重写。(替换是原子性的)
RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比, RDB最 重要的优点之一是对性能的影响相对较小。
(体积小,恢复速度更快,对性能影响较小。)
(实时性差、兼容性差、在fork子进程时会阻塞父进程。)
(1) redis-cli
127.0.0.1:6379> info memory
(2) redis-cli info memory
内存碎片率=Redis向操作系统申请的内存 / Redis中的数据占用的内存
mem_fragmentation_ratio = used_memory_rss / used_memory
mem_fragmentation_ratio:内存碎片率
redis-cli info memory |grep ratio
config set activedefrag yes #自动碎片清理
memory purge #手动碎片清理
redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换
避免内存交换发生的方法:
内存清理策略,保证合理分配redis有限的内存资源
当内存使用达到设置的最大阈值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除(noenviction)。配置文件中修改 maxmemory-policy 属性值:
im /etc/redis/6379.conf
---598行----
maxmemory-policy noenviction #修改max-memory-policy属性值
##回收策略有以下几种:##
●volatile-lru
#使用LRU算法从已设置过期时间的数据集合中淘汰数据
(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl
#从已设置过期时间的数据集合中挑选即将过期的数据淘汰
(移除最近过期的key)
●volatile-random
#从已设置过期时间的数据集合中随机挑选数据淘汰
(在设置了TTL的key里随机移除)
●allkeys-lru
#使用LRU算法 从所有数据集合中淘汰数据
(移除最少使用的key,针对所有的key)
●allkeys-random
#从数据集合中任意选择数据淘汰(随机移除key)
●noenviction
#禁止淘汰数据(不删除直到写满时报错)
vim /etc/redis/6379.conf
-----114行------
114 timeout 0
#单位为秒(s),取值范围为0~100000。默认值为0,表示无限制,即Redis不会主动断开连接,即使这个客户端已经空闲了很长时间。
#例如可设置为600,则客户端空闲10分钟后,Redis会主动断开连接。
#注意:在实际运行中,为了提高性能,Redis不一定会精确地按照timeout的值规定的时间来断开符合条件的空闲连接,例如设置timeout为10s,但空闲连接可能在12s后,服务器中新增很多连接时才会被断开。
vim /etc/redis/6379.conf
-----540行------
540 # maxclients 10000 #若不设置,默认是10000
redis-cli info clients #查看redis当前连接数
config set activedefrag yes #自动碎片清理
memory purge #手动碎片清理
内存阈值如果不设置,则没有限制,直到把服务器的内存干满、之后会使用交换分区。
设置内存阈值后,不会使用swap交换分区。且如果设置了key回收策略,当内存使用达到设置的最大阈值时,系统会进行key回收
vim /etc/redis/6379.conf
-----567行------
567 # maxmemory
568 maxmemory 1gb #例如设置最大内存阈值为1gb
当内存使用达到设置的最大阈值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除(noenviction)。设置key回收策略后,则当redis内存使用达到设置的最大阈值时,系统会进行key回收,释放一部分内存
vim /etc/redis/6379.conf
---598行----
maxmemory-policy noenviction #需要修改max-memory-policy属性值
##回收策略有以下几种:##
●volatile-lru
#使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl
#从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random
#从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru
#使用LRU算法 从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random
#从数据集合中任意选择数据淘汰(随机移除key)
●noenviction
#禁止淘汰数据(不删除直到写满时报错)
定义:缓存雪崩是指大量的应用请求无法在 Redis 缓存中进行处理,紧接着,应用将大量请求发送到数据库层,导致数据库层的压力激增。
一个简单的雪崩过程:
产生的原因:
解决方案:
缓存击穿是指当前热点数据存储到期时,多个线程同时并发访问热点数据。因为缓存刚过期,所有并发请求都会到数据库中查询数据
解决方法:
缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起id为-1的数据或者特别大的不存在的数据。有可能是黑客利用漏洞攻击从而去压垮应用的数据库。