每次忘了都要查半天,自己推导一遍记录下来
设 f ( x ) f(x) f(x)存在n阶导数,根据一阶导数定义:
lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 = f ′ ( x ) \lim\limits_{x\rightarrow x_0}\cfrac{f(x)-f(x_0)}{x-x_0}=f'(x) x→x0limx−x0f(x)−f(x0)=f′(x)
等式脱帽
f ( x ) − f ( x 0 ) x − x 0 = f ′ ( x 0 ) + o \cfrac{f(x)-f(x_0)}{x-x_0}=f'(x_0)+o x−x0f(x)−f(x0)=f′(x0)+o
f ( x ) − f ( x 0 ) = ( x − x 0 ) f ′ ( x 0 ) + o ( x − x 0 ) f(x)-f(x_0)=(x-x_0)f'(x_0)+o(x-x_0) f(x)−f(x0)=(x−x0)f′(x0)+o(x−x0)
化简得
{ f ( x ) = f ( x 0 ) + ( x − x 0 ) f ′ ( x 0 ) + o ( x − x 0 ) ( 1 ) o ( x − x 0 ) = f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) ( 2 ) \begin{cases} f(x)=f(x_0)+(x-x_0)f'(x_0)+o(x-x_0)(1)\\ o(x-x_0)= f(x)-f(x_0)-(x-x_0)f'(x_0)(2) \end{cases} {f(x)=f(x0)+(x−x0)f′(x0)+o(x−x0)(1)o(x−x0)=f(x)−f(x0)−(x−x0)f′(x0)(2)
根据式 ( 2 ) (2) (2)
lim x → x 0 o ( x − x 0 ) ( x − x 0 ) 2 = lim x → x 0 f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) ( x − x 0 ) 2 \lim\limits_{x\rightarrow x_0}\cfrac{o(x-x_0)}{(x-x_0)^2}=\lim\limits_{x\rightarrow x_0}\cfrac{f(x)-f(x_0)-(x-x_0)f'(x_0)}{(x-x_0)^2} x→x0lim(x−x0)2o(x−x0)=x→x0lim(x−x0)2f(x)−f(x0)−(x−x0)f′(x0) ( 0 0 型 ) \big(\frac{0}{0} 型\big) (00型)
使用洛必达法则
lim x → x 0 o ( x − x 0 ) ( x − x 0 ) 2 = lim x → x 0 f ′ ( x ) − f ′ ( x 0 ) 2 ( x − x 0 ) = lim x → x 0 f ′ ′ ( x ) 2 = f ′ ′ ( x 0 ) 2 ( 常 数 ) \lim\limits_{x\rightarrow x_0}\cfrac{o(x-x_0)}{(x-x_0)^2}=\lim\limits_{x\rightarrow x_0}\cfrac{f'(x)-f'(x_0)}{2(x-x_0)}=\lim\limits_{x\rightarrow x_0}\cfrac{f''(x)}{2}=\cfrac{f''(x_0)}{2}(常数) x→x0lim(x−x0)2o(x−x0)=x→x0lim2(x−x0)f′(x)−f′(x0)=x→x0lim2f′′(x)=2f′′(x0)(常数)
所以得出 o ( x − x 0 ) o(x-x_0) o(x−x0)和 ( x − x 0 ) 2 (x-x_0)^2 (x−x0)2是等价无穷小
o ( x − x 0 ) ( x − x 0 ) 2 = 1 2 f ′ ′ ( x 0 ) + o \cfrac{o(x-x_0)}{(x-x_0)^2}=\cfrac{1}{2}f''(x_0)+o (x−x0)2o(x−x0)=21f′′(x0)+o
o ( x − x 0 ) = 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) + o ( x − x 0 ) 2 o(x-x_0)=\cfrac{1}{2}(x-x_0)^2f''(x_0)+o(x-x_0)^2 o(x−x0)=21(x−x0)2f′′(x0)+o(x−x0)2
带入式 ( 1 ) (1) (1)中
{ f ( x ) = f ( x 0 ) + ( x − x 0 ) f ′ ( x 0 ) + 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) + o ( x − x 0 ) 2 ( 3 ) o ( x − x 0 ) 2 = f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) − 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) ( 4 ) \begin{cases} f(x)=f(x_0)+(x-x_0)f'(x_0)+\cfrac{1}{2}(x-x_0)^2f''(x_0)+o(x-x_0)^2(3)\\ o(x-x_0)^2= f(x)-f(x_0)-(x-x_0)f'(x_0)-\cfrac{1}{2}(x-x_0)^2f''(x_0)(4) \end{cases} ⎩⎪⎨⎪⎧f(x)=f(x0)+(x−x0)f′(x0)+21(x−x0)2f′′(x0)+o(x−x0)2(3)o(x−x0)2=f(x)−f(x0)−(x−x0)f′(x0)−21(x−x0)2f′′(x0)(4)
根据式 ( 4 ) (4) (4)
lim x → x 0 o ( x − x 0 ) 2 ( x − x 0 ) 3 = lim x → x 0 f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) − 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) ( x − x 0 ) 3 \lim\limits_{x\rightarrow x_0}\cfrac{o(x-x_0)^2}{(x-x_0)^3}=\lim\limits_{x\rightarrow x_0}\cfrac{f(x)-f(x_0)-(x-x_0)f'(x_0)-\cfrac{1}{2}(x-x_0)^2f''(x_0)}{(x-x_0)^3} x→x0lim(x−x0)3o(x−x0)2=x→x0lim(x−x0)3f(x)−f(x0)−(x−x0)f′(x0)−21(x−x0)2f′′(x0) ( 0 0 型 ) \big(\frac{0}{0} 型\big) (00型)
使用洛必达法则
lim x → x 0 o ( x − x 0 ) 2 ( x − x 0 ) 3 = 2 次 lim x → x 0 f ′ ′ ( x ) − f ′ ′ ( x 0 ) 3 ⋅ 2 ( x − x 0 ) = lim x → x 0 f ′ ′ ′ ( x ) 6 = f ′ ′ ′ ( x 0 ) 6 ( 常 数 ) \lim\limits_{x\rightarrow x_0}\cfrac{o(x-x_0)^2}{(x-x_0)^3}\xlongequal{2次}\lim\limits_{x\rightarrow x_0}\cfrac{f''(x)-f''(x_0)}{3\cdot2(x-x_0)}=\lim\limits_{x\rightarrow x_0}\cfrac{f'''(x)}{6}=\cfrac{f'''(x_0)}{6}(常数) x→x0lim(x−x0)3o(x−x0)22次x→x0lim3⋅2(x−x0)f′′(x)−f′′(x0)=x→x0lim6f′′′(x)=6f′′′(x0)(常数)
所以得出 o ( x − x 0 ) 2 o(x-x_0)^2 o(x−x0)2和 ( x − x 0 ) 3 (x-x_0)^3 (x−x0)3是等价无穷小
o ( x − x 0 ) 2 ( x − x 0 ) 3 = 1 6 f ′ ′ ′ ( x 0 ) + o \cfrac{o(x-x_0)^2}{(x-x_0)^3}=\cfrac{1}{6}f'''(x_0)+o (x−x0)3o(x−x0)2=61f′′′(x0)+o
o ( x − x 0 ) 2 = 1 6 ( x − x 0 ) 3 f ′ ′ ′ ( x 0 ) + o ( x − x 0 ) 3 o(x-x_0)^2=\cfrac{1}{6}(x-x_0)^3f'''(x_0)+o(x-x_0)^3 o(x−x0)2=61(x−x0)3f′′′(x0)+o(x−x0)3
带入式 ( 1 ) (1) (1)中
{ f ( x ) = f ( x 0 ) + ( x − x 0 ) f ′ ( x 0 ) + 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) + 1 6 ( x − x 0 ) 3 f ′ ′ ′ ( x 0 ) + o ( x − x 0 ) 3 ( 5 ) o ( x − x 0 ) 3 = f ( x ) − f ( x 0 ) − ( x − x 0 ) f ′ ( x 0 ) − 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) − 1 6 ( x − x 0 ) 3 f ′ ′ ′ ( x 0 ) ( 6 ) \begin{cases} f(x)=f(x_0)+(x-x_0)f'(x_0)+\cfrac{1}{2}(x-x_0)^2f''(x_0)+\cfrac{1}{6}(x-x_0)^3f'''(x_0)+o(x-x_0)^3(5)\\ o(x-x_0)^3= f(x)-f(x_0)-(x-x_0)f'(x_0)-\cfrac{1}{2}(x-x_0)^2f''(x_0)-\cfrac{1}{6}(x-x_0)^3f'''(x_0)(6) \end{cases} ⎩⎪⎨⎪⎧f(x)=f(x0)+(x−x0)f′(x0)+21(x−x0)2f′′(x0)+61(x−x0)3f′′′(x0)+o(x−x0)3(5)o(x−x0)3=f(x)−f(x0)−(x−x0)f′(x0)−21(x−x0)2f′′(x0)−61(x−x0)3f′′′(x0)(6)
以此类推
o ( x − x 0 ) n − 1 = 1 n ! ( x − x 0 ) n f ( n ) ( x 0 ) + o ( x − x 0 ) n o(x-x_0)^{n-1}=\cfrac{1}{n!}(x-x_0)^nf^{(n)}(x_0)+o(x-x_0)^{n} o(x−x0)n−1=n!1(x−x0)nf(n)(x0)+o(x−x0)n
f ( x ) = f ( x 0 ) + ( x − x 0 ) f ′ ( x 0 ) + 1 2 ( x − x 0 ) 2 f ′ ′ ( x 0 ) + 1 6 ( x − x 0 ) 3 f ′ ′ ′ ( x 0 ) + ⋯ + 1 n ! ( x − x 0 ) n f ( n ) ( x 0 ) + o ( x − x 0 ) n f(x)=f(x_0)+(x-x_0)f'(x_0)+\cfrac{1}{2}(x-x_0)^2f''(x_0)+\cfrac{1}{6}(x-x_0)^3f'''(x_0)+\cdots+\cfrac{1}{n!}(x-x_0)^nf^{(n)}(x_0)+o(x-x_0)^n f(x)=f(x0)+(x−x0)f′(x0)+21(x−x0)2f′′(x0)+61(x−x0)3f′′′(x0)+⋯+n!1(x−x0)nf(n)(x0)+o(x−x0)n
( 1 ) e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) = ∑ n = 0 ∞ x n n ! (1)e^x=1+x+\cfrac{x^2}{2!}+\cdots+\cfrac{x^n}{n!}+o(x^n)=\displaystyle\sum_{n=0}^{\infin}\cfrac{x^n}{n!} (1)ex=1+x+2!x2+⋯+n!xn+o(xn)=n=0∑∞n!xn
( 2 ) sin x = x − x 3 3 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + o ( x 2 n + 1 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! (2)\sin x=x-\cfrac{x^3}{3!}+\cdots+(-1)^n\cfrac{x^{2n+1}}{(2n+1)!}+o(x^{2n+1})=\displaystyle\sum_{n=0}^{\infin}(-1)^n\cfrac{x^{2n+1}}{(2n+1)!} (2)sinx=x−3!x3+⋯+(−1)n(2n+1)!x2n+1+o(x2n+1)=n=0∑∞(−1)n(2n+1)!x2n+1
( 3 ) cos x = 1 − x 2 2 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! (3)\cos x=1-\cfrac{x^2}{2!}+\cdots+(-1)^n\cfrac{x^{2n}}{(2n)!}+o(x^{2n})=\displaystyle\sum_{n=0}^{\infin}(-1)^n\cfrac{x^{2n}}{(2n)!} (3)cosx=1−2!x2+⋯+(−1)n(2n)!x2n+o(x2n)=n=0∑∞(−1)n(2n)!x2n
( 4 ) ln ( 1 + x ) = x − x 2 2 + ⋯ + ( − 1 ) n − 1 x n ( n ) + o ( x n ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n . ( x > − 1 ) (4)\ln (1+x)=x-\cfrac{x^2}{2}+\cdots+(-1)^{n-1}\cfrac{x^{n}}{(n)}+o(x^n)=\displaystyle\sum_{n=1}^{\infin}(-1)^{n-1}\cfrac{x^{n}}{n }.(x>-1) (4)ln(1+x)=x−2x2+⋯+(−1)n−1(n)xn+o(xn)=n=1∑∞(−1)n−1nxn.(x>−1) [注]: 从n=1开始
( 5 ) 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) = ∑ n = 0 ∞ x n (5)\cfrac{1}{1-x}=1+x+x^2+\cdots+x^n+o(x^n)=\displaystyle\sum_{n=0}^\infin x^n (5)1−x1=1+x+x2+⋯+xn+o(xn)=n=0∑∞xn
( 6 ) 1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + o ( x n ) = ∑ n = 0 ∞ ( − 1 ) n x n (6)\cfrac{1}{1+x}=1-x+x^2-\cdots+(-1)^nx^n+o(x^n)=\displaystyle\sum_{n=0}^\infin (-1)^nx^n (6)1+x1=1−x+x2−⋯+(−1)nxn+o(xn)=n=0∑∞(−1)nxn
( 7 ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + o ( x 2 ) ( x → 0 ) (7)(1+x)^\alpha=1+\alpha x+\cfrac{\alpha(\alpha-1)}{2}x^2+o(x^2)(x\rightarrow0) (7)(1+x)α=1+αx+2α(α−1)x2+o(x2)(x→0)
( 8 ) tan x = x + 1 3 x 3 + o ( x 3 ) ( x → 0 ) (8)\tan x = x+\cfrac{1}{3}x^3+o(x^3)(x\rightarrow0) (8)tanx=x+31x3+o(x3)(x→0)
( 9 ) arcsin x = x + 1 6 x 3 + o ( x 3 ) ( x → 0 ) (9)\arcsin x=x+\cfrac{1}{6}x^3+o(x^3)(x\rightarrow0) (9)arcsinx=x+61x3+o(x3)(x→0)
( 10 ) arctan x = x − 1 3 x 3 + o ( x 3 ) ( x → 0 ) (10)\arctan x=x-\cfrac{1}{3}x^3+o(x^3)(x\rightarrow0) (10)arctanx=x−31x3+o(x3)(x→0)